

www.woodplc.com

Wood Environment & Infrastructure Solutions, Inc.
511 Congress Street
Ste. 200
Portland, ME 04101
USA
T: 207-775-5401

September 27, 2019

Chinny Esakkiperumal
Olin Corporation
3855 North Ocoee Street, Suite 200
Cleveland, TN 37312

Subject: Per- and Polyfluoroalkyl Substances (PFAS) Sampling Results
Olin Chemical Superfund Site, Wilmington, Massachusetts

Dear Mr. Esakkiperumal:

This letter report was prepared on behalf of Olin Corporation (Olin) by Wood Environment and Infrastructure Solutions Inc., (Wood) to summarize the findings of groundwater sampling in select wells for per- and polyfluoroalkyl substances (PFAS) at the Olin Chemical Superfund Site (Site) in Wilmington, Massachusetts. Sampling was conducted at the request of the United States Environmental Protection Agency (USEPA) to assess the potential presence of PFAS at the Site. Sampling was performed in accordance with the approved Remedial Investigation (RI) Work plan Addendum V, PFAS Sampling Plan dated May 23, 2019 (Wood, 2019). The sampled locations are shown on **Figure 1** and include:

- Six wells located in the vicinity of the four historical manufacturing areas,
- Two wells located downgradient in the northeast corner of the property
- One well located on the western side of the Containment Area
- Three multiport samples located within Dense Aqueous Phase Liquid (DAPL), diffuse and overlying groundwater in the Containment Area on-property DAPL pool, and
- One bedrock well located in the Containment Area.

Note, the approved sampling plan included the collection of groundwater PFAS samples from fourteen locations. However, one well, B-10, located in the middle of Plant B Production Area (**Figure 1**), could not be located and is presumed destroyed. B-10 is not part of routine monitoring activities and has not been sampled for over 8 years. Although B-10 could not be sampled, two other wells in the immediate vicinity and downgradient of B-10 (GW-16R; and GW-101) were sampled as part of this investigation – so absence of data from well B-10 does not present a data gap.



#### **GROUNDWATER SAMPLING**

On May 28 and 29, 2019, groundwater samples for PFAS analysis were collected using low-flow procedures outlined in the RI/Feasibility Study (FS) Work Plan. PFAS-specific sampling precautions as described in the PFAS Quality Assurance Project Plan (QAPP) Addendum were carried out throughout the sampling effort.

The depth to water was measured in each well prior to initiating sampling; because of the narrow diameter of the sampling ports, depth to water was not measured in multiport well MP-1. Field Data forms documenting the sampling at each well are provided in **Attachment A**. Decontamination of non-dedicated sampling and measuring devices was completed between sampling locations using PFAS-free water.

Samples were placed in a cooler, iced, and delivered using overnight courier to Eurofins Lancaster Laboratories Environmental for analysis of fourteen PFAS compounds using USEPA analytical method 537 Version 1.1 Modified.

#### **RESULTS**

A summary of the PFAS sampling results is provided in **Table 1.** Data validation was conducted in accordance with the QAPP. A subset of the data was qualified as estimated during validation; however, no data were rejected due to laboratory issues. A copy of the Data Validation Report is provided as **Attachment B** and laboratory data reports are provided in **Attachment C**.

None of the sampled locations had perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) present at concentrations above the USEPA Health Advisory (HAs) and project action limits (PALs) outlined in the QAPP. Detected concentrations of PFOS and PFOA ranged from less than 1 nanograms per liter (ng/L) to a maximum of 8.4 ng/L. The HA for PFOS and PFOA is 70 ng/L (for individual compounds or combined where the compounds are detected in the same sample) and the PALs range from 40 to 4,000 ng/L. Overall, the detected concentrations were significantly less than the HAs and PALs. Note, one of the thirteen samples collected (OC-MP-1#1-XX) was analyzed by the laboratory at a reduced volume (with a dilution factor of 100X) due to matrix interference. PFAS compounds were not detected in this diluted analysis and the reporting limits were elevated accordingly. Olin instructed the laboratory to re-analyze the sample at a 25X dilution factor. PFAS compounds were not detected in the re-analysis performed on OC-MP-1#1-XX and the minimum detection levels reported by the laboratory were less than the PALs.

## **CONCLUSIONS & RECOMMENDATIONS**

As requested by the USEPA, groundwater samples were collected for PFAS analysis at locations down gradient from former manufacturing areas that have shown evidence of historical site-related activities/impacts. Samples were also collected from within the containment area, from both the diffuse layer and within the DAPL overlying bedrock. Wells that were sampled for PFAS are installed in different aquifers (shallow overburden, deep overburden and shallow bedrock) providing a vertical evaluation of the aquifers for PFAS. Detected PFOS and PFOA concentrations (either individual or combined) at the thirteen sampling locations were significantly below USEPA HAs and PALs. Analysis of groundwater samples collected as part of this investigation does not indicate a source for PFAS, or PFAS impacts at the site. Therefore, it is recommended that no further sampling for PFAS compounds be conducted or is warranted for the Site.



Sincerely,

**Wood Environment & Infrastructure Solutions, Inc.** 

Elizabeth T. Bowen

Associate Project Manager

Hank Andolsek

Senior Hydrogeologist

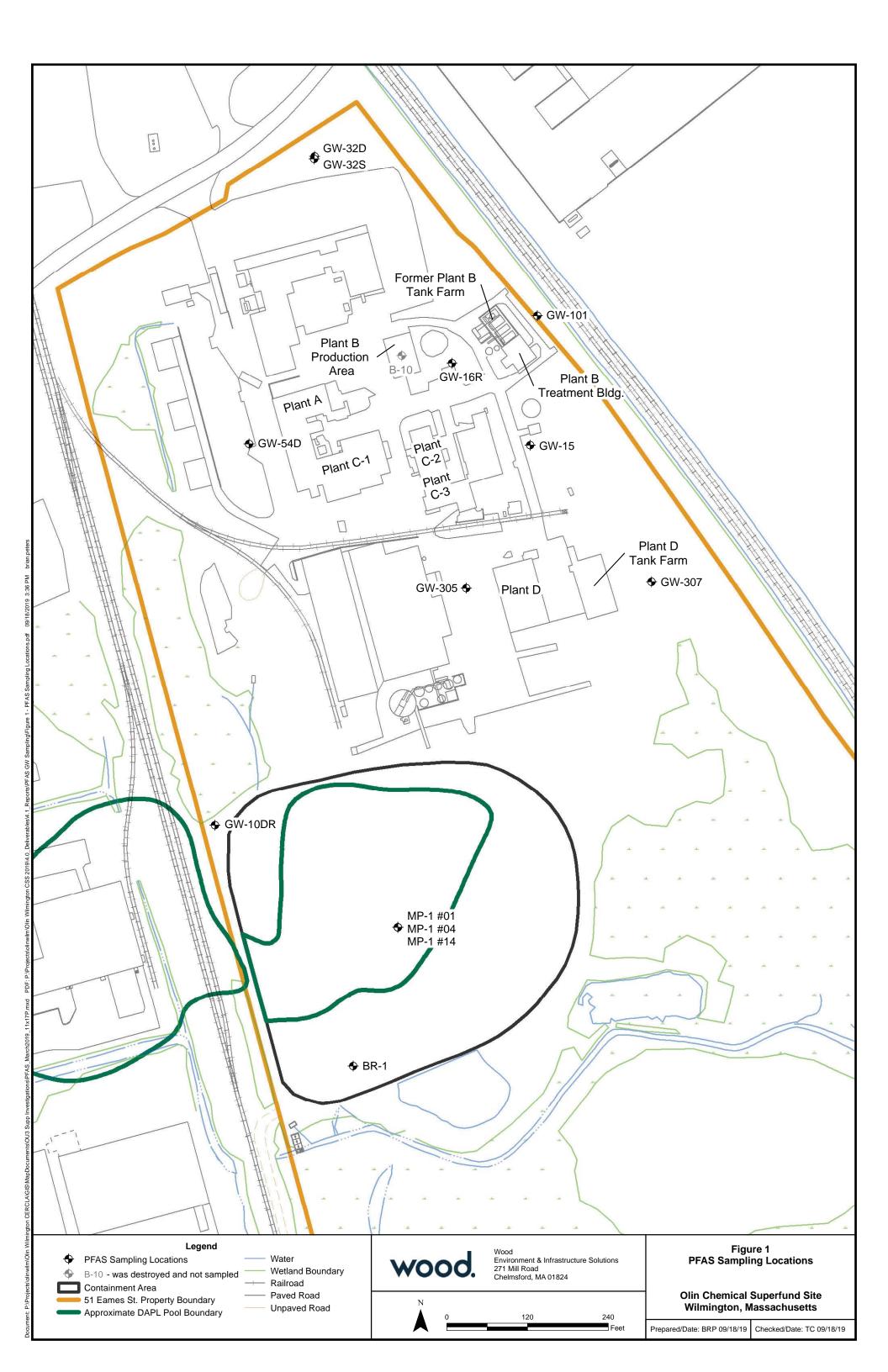
Copy: James Cashwell, Olin Corporation

Nelson Walter, Wood Environment and Infrastructure, Inc.

### **Attachments:**

Figure 1 - PFAS Sampling Locations

Table 1 - Final Results Summary


Attachment A - Field Data Records

Attachment B - Data Validation Report

Attachment C - Laboratory Analytical Report



## **FIGURE**





## **TABLE**

|               |          |                                                            | very Group | 2046067     | 2046067    | 2046067          | 2046067          |                  |                  |
|---------------|----------|------------------------------------------------------------|------------|-------------|------------|------------------|------------------|------------------|------------------|
|               |          |                                                            | Lab        | Sample Deli | Location   | BR-1             | GW-101           | GW-15            | GW-16R           |
|               |          |                                                            |            | Field C     | ample Date | 5/28/2019        | 5/28/2019        | 5/28/2019        | 5/28/2019        |
|               |          |                                                            |            |             | •          |                  |                  |                  |                  |
|               |          |                                                            |            | Field       | Sample ID  |                  |                  |                  | OC-GW-16R-XXX    |
|               |          |                                                            |            |             | QC Code    | FS               | FS               | FS               | FS               |
| Method        | Fraction | Parameter                                                  | PALs       | HAs         | Units      | Result Qualifier | Result Qualifier | Result Qualifier | Result Qualifier |
| EPA 537.1 MOD | N        | N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)  | NA         | NA          | ng/l       | 2.7 U            | 2.5 U            | 2.7 U            | 2.6 U            |
| EPA 537.1 MOD | N        | N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | NA         | NA          | ng/l       | 2.7 U            | 2.5 U            | 2.7 U            | 2.6 U            |
| EPA 537.1 MOD | N        | Perfluorobutanesulfonic acid (PFBS)                        | 40000      | NA          | ng/l       | <b>0.78</b> J    | <b>0.76</b> J    | 0.99             | 0.83 J           |
| EPA 537.1 MOD | N        | Perfluorodecanoic acid (PFDA)                              | NA         | NA          | ng/l       | 1.8 U            | 1.7 U            | 1.8 U            | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluorododecanoic acid (PFDoA)                           | NA         | NA          | ng/l       | 1.8 U            | 1.7 U            | 1.8 U            | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluoroheptanoic acid (PFHpA)                            | 70         | NA          | ng/l       | 2.1              | 2.3              | <b>0.52</b> J    | 0.89             |
| EPA 537.1 MOD | N        | Perfluorohexanesulfonic acid (PFHxS)                       | 70         | NA          | ng/l       | 1.1 J            | 1.7 U            | <b>0.44</b> J    | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluorohexanoic acid (PFHxA)                             | 70         | NA          | ng/l       | 3.4              | 5.3              | <b>0.68</b> J    | 1.6 J            |
| EPA 537.1 MOD | N        | Perfluorononanoic acid (PFNA)                              | 70         | NA          | ng/l       | 1.1 J            | <b>1.3</b> J     | 1.8 U            | <b>0.55</b> J    |
| EPA 537.1 MOD | N        | Perfluorooctanessulfonic acid (PFOS)                       | 40         | 70          | ng/l       | 6.4              | 5.1              | 3.5              | 2                |
| EPA 537.1 MOD | N        | Perfluorooctanoic acid (PFOA)                              | 40         | 70          | ng/l       | 8.4              | 5.2              | 2.5              | 3.2              |
| EPA 537.1 MOD | N        | Perfluorotetradecanoic acid (PFTeDA)                       | NA         | NA          | ng/l       | 0.91 U           | 0.84 U           | 0.9 U            | 0.86 U           |
| EPA 537.1 MOD | N        | Perfluorotridecanoic acid (PFTrDA)                         | NA         | NA          | ng/l       | 0.91 U           | 0.84 U           | 0.9 U            | 0.86 U           |
| EPA 537.1 MOD | N        | Perfluoroundecanoic acid (PFUnDA)                          | NA         | NA          | ng/l       | 1.8 U            | 1.7 U            | 1.8 U            | 1.7 U            |

#### Notes:

|               |          |                                                            | Lab   | Sample Deli | very Group | 2046067          | 2046067          | 2046067          | 2046067          | 2046067          |
|---------------|----------|------------------------------------------------------------|-------|-------------|------------|------------------|------------------|------------------|------------------|------------------|
|               |          |                                                            |       | -           | Location   | GW-32D           | GW-32S           | GW-54D           | GW-54D           | QC               |
|               |          |                                                            |       | Field S     | ample Date | 5/28/2019        | 5/28/2019        | 5/28/2019        | 5/28/2019        | 5/28/2019        |
|               |          |                                                            |       | Field       | Sample ID  | OC-GW-32D-XXX    | OC-GW-32S-XXX    | OC-GW-54D-DUP    | OC-GW-54D-XXX    | OC-FB-052819     |
|               |          |                                                            |       |             | QC Code    | FS               | FS               | FD               | FS               | FB               |
| Method        | Fraction | Parameter                                                  | PALs  | HAs         | Units      | Result Qualifier |
| EPA 537.1 MOD | N        | N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)  | NA    | NA          | ng/l       | <b>1.8</b> J     | 2.7 U            | 2.7 U            | 2.7 U            | 2.6 U            |
| EPA 537.1 MOD | N        | N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | NA    | NA          | ng/l       | 2.7 U            | 2.7 U            | 2.7 U            | 2.7 U            | 2.6 U            |
| EPA 537.1 MOD | N        | Perfluorobutanesulfonic acid (PFBS)                        | 40000 | NA          | ng/l       | <b>0.87</b> J    | 0.91 U           | <b>0.49</b> J    | <b>0.54</b> J    | 0.87 U           |
| EPA 537.1 MOD | N        | Perfluorodecanoic acid (PFDA)                              | NA    | NA          | ng/l       | 1.8 U            | 1.8 U            | 1.8 U            | 1.8 U            | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluorododecanoic acid (PFDoA)                           | NA    | NA          | ng/l       | 1.8 U            | 1.8 U            | 1.8 U            | 1.8 U            | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluoroheptanoic acid (PFHpA)                            | 70    | NA          | ng/l       | 1.4              | <b>0.45</b> J    | 1.1 J            | <b>1.1</b> J     | 0.87 U           |
| EPA 537.1 MOD | N        | Perfluorohexanesulfonic acid (PFHxS)                       | 70    | NA          | ng/l       | <b>0.65</b> J    | 1.8 U            | 1.8 U            | 1.8 U            | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluorohexanoic acid (PFHxA)                             | 70    | NA          | ng/l       | <b>1.8</b> J     | 1.8 U            | <b>1.8</b> J     | <b>1.7</b> J     | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluorononanoic acid (PFNA)                              | 70    | NA          | ng/l       | <b>0.97</b> J    | 1.8 U            | <b>1</b> J       | <b>1.1</b> J     | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluorooctanessulfonic acid (PFOS)                       | 40    | 70          | ng/l       | 8.1              | <b>0.51</b> J    | <b>1.5</b> J     | <b>1.6</b> J     | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluorooctanoic acid (PFOA)                              | 40    | 70          | ng/l       | 5                | 1.7              | 2.2              | 2.4              | 0.87 U           |
| EPA 537.1 MOD | N        | Perfluorotetradecanoic acid (PFTeDA)                       | NA    | NA          | ng/l       | 0.9 U            | 0.91 U           | 0.89 U           | 0.89 U           | 0.87 U           |
| EPA 537.1 MOD | N        | Perfluorotridecanoic acid (PFTrDA)                         | NA    | NA          | ng/l       | 0.9 U            | 0.91 U           | 0.89 U           | 0.89 U           | 0.87 U           |
| EPA 537.1 MOD | N        | Perfluoroundecanoic acid (PFUnDA)                          | NA    | NA          | ng/l       | 1.8 U            | 1.8 U            | 1.8 U            | 1.8 U            | 1.7 U            |

#### Notes:

|               |          |                                                            | Lab   | Sample Deli | very Group | 2046391          | 2046391          | 2046391          | 2046391          |
|---------------|----------|------------------------------------------------------------|-------|-------------|------------|------------------|------------------|------------------|------------------|
|               |          |                                                            |       | -           | Location   | GW-10DR          | GW-305           | GW-307           | MP-1 #04         |
|               |          |                                                            |       |             | ample Date |                  | 5/29/2019        | 5/29/2019        | 5/29/2019        |
|               |          |                                                            |       | Field       | Sample ID  | OC-GW-10DR-XXX   | OC-GW-305-XXX    | OC-GW-307-XXX    | OC-MP-1#4-XXX    |
|               |          |                                                            |       |             | QC Code    | FS               | FS               | FS               | FS               |
| Method        | Fraction | Parameter                                                  | PALs  | HAs         | Units      | Result Qualifier | Result Qualifier | Result Qualifier | Result Qualifier |
| EPA 537.1 MOD | N        | N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)  | NA    | NA          | ng/l       | 2.7 U            | 2.6 U            | 2.7 U            | 2.7 U            |
| EPA 537.1 MOD | N        | N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | NA    | NA          | ng/l       | 2.7 U            | 2.6 U            | 2.7 U            | 2.7 U            |
| EPA 537.1 MOD | N        | Perfluorobutanesulfonic acid (PFBS)                        | 40000 | NA          | ng/l       | <b>0.7</b> J     | <b>0.55</b> J    | 1.2              | <b>0.42</b> J    |
| EPA 537.1 MOD | N        | Perfluorodecanoic acid (PFDA)                              | NA    | NA          | ng/l       | 1.8 U            | 1.7 U            | 1.8 U            | 1.8 U            |
| EPA 537.1 MOD | N        | Perfluorododecanoic acid (PFDoA)                           | NA    | NA          | ng/l       | 1.8 U            | 1.7 U            | 1.8 U            | 1.8 U            |
| EPA 537.1 MOD | N        | Perfluoroheptanoic acid (PFHpA)                            | 70    | NA          | ng/l       | 1.8              | 1.3              | 1.9              | 0.9 U            |
| EPA 537.1 MOD | N        | Perfluorohexanesulfonic acid (PFHxS)                       | 70    | NA          | ng/l       | <b>0.38</b> J    | 1.7 U            | 1.8 U            | <b>0.61</b> J    |
| EPA 537.1 MOD | N        | Perfluorohexanoic acid (PFHxA)                             | 70    | NA          | ng/l       | <b>1.7</b> J     | <b>1.2</b> J     | 2.5              | 2.4              |
| EPA 537.1 MOD | N        | Perfluorononanoic acid (PFNA)                              | 70    | NA          | ng/l       | 1 J              | <b>0.69</b> J    | <b>1.1</b> J     | <b>0.82</b> J    |
| EPA 537.1 MOD | N        | Perfluorooctanessulfonic acid (PFOS)                       | 40    | 70          | ng/l       | <b>1.6</b> J     | <b>1.7</b> J     | 2.8              | 4.8              |
| EPA 537.1 MOD | N        | Perfluorooctanoic acid (PFOA)                              | 40    | 70          | ng/l       | 6.4              | 2.9              | 5.4              | 11               |
| EPA 537.1 MOD | N        | Perfluorotetradecanoic acid (PFTeDA)                       | NA    | NA          | ng/l       | 0.89 U           | 0.86 U           | 0.88 U           | 0.9 U            |
| EPA 537.1 MOD | N        | Perfluorotridecanoic acid (PFTrDA)                         | NA    | NA          | ng/l       | 0.89 U           | 0.86 U           | 0.88 U           | 0.9 U            |
| EPA 537.1 MOD | N        | Perfluoroundecanoic acid (PFUnDA)                          | NA    | NA          | ng/l       | 1.8 U            | 1.7 U            | 1.8 U            | 1.8 U            |

#### Notes:

Created by: KMS 8/15/19

Checked by: EAP 8/15/19

|               |          |                                                            | Lab S | Sample Deliv | very Group | 2046391          | 2052690          |
|---------------|----------|------------------------------------------------------------|-------|--------------|------------|------------------|------------------|
|               |          |                                                            |       |              | Location   | MP-1 #14         | MP-1 #01         |
|               |          |                                                            |       | Field Sa     | ample Date | 5/29/2019        | 5/29/2019        |
|               |          |                                                            |       | Field        | Sample ID  | OC-MP-1#14-XXX   | OC-MP-1#1-XXX    |
|               |          |                                                            |       |              | QC Code    | FS               | FS               |
| Method        | Fraction | Parameter                                                  | PALs  | HAs          | Units      | Result Qualifier | Result Qualifier |
| EPA 537.1 MOD | N        | N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)  | NA    | NA           | ng/l       | 2.7 U            | 75 UJ            |
| EPA 537.1 MOD | N        | N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | NA    | NA           | ng/l       | 2.7 U            | 75 UJ            |
| EPA 537.1 MOD | N        | Perfluorobutanesulfonic acid (PFBS)                        | 40000 | NA           | ng/l       | <b>0.82</b> J    | 25 UJ            |
| EPA 537.1 MOD | N        | Perfluorodecanoic acid (PFDA)                              | NA    | NA           | ng/l       | 1.8 U            | 50 UJ            |
| EPA 537.1 MOD | N        | Perfluorododecanoic acid (PFDoA)                           | NA    | NA           | ng/l       | 1.8 U            | 50 UJ            |
| EPA 537.1 MOD | N        | Perfluoroheptanoic acid (PFHpA)                            | 70    | NA           | ng/l       | 1.5              | 25 UJ            |
| EPA 537.1 MOD | N        | Perfluorohexanesulfonic acid (PFHxS)                       | 70    | NA           | ng/l       | <b>0.47</b> J    | 50 UJ            |
| EPA 537.1 MOD | N        | Perfluorohexanoic acid (PFHxA)                             | 70    | NA           | ng/l       | 2                | 50 UJ            |
| EPA 537.1 MOD | N        | Perfluorononanoic acid (PFNA)                              | 70    | NA           | ng/l       | <b>1.2</b> J     | 50 UJ            |
| EPA 537.1 MOD | N        | Perfluorooctanessulfonic acid (PFOS)                       | 40    | 70           | ng/l       | 2.8              | 50 UJ            |
| EPA 537.1 MOD | N        | Perfluorooctanoic acid (PFOA)                              | 40    | 70           | ng/l       | 5.1              | 25 UJ            |
| EPA 537.1 MOD | N        | Perfluorotetradecanoic acid (PFTeDA)                       | NA    | NA           | ng/l       | 0.9 U            | 25 UJ            |
| EPA 537.1 MOD | N        | Perfluorotridecanoic acid (PFTrDA)                         | NA    | NA           | ng/l       | 0.9 U            | 25 UJ            |
| EPA 537.1 MOD | N        | Perfluoroundecanoic acid (PFUnDA)                          | NA    | NA           | ng/l       | 1.8 U            | 50 UJ            |

Notes:



## ATTACHMENT A FIELD DATA RECORDS

| - 1 |                                   |                                                               | CORD - LO                           |                           | ROUNDWAT                                             | ER SAM                       | PLING                                    |                                                                        |                            |                           |                                            |
|-----|-----------------------------------|---------------------------------------------------------------|-------------------------------------|---------------------------|------------------------------------------------------|------------------------------|------------------------------------------|------------------------------------------------------------------------|----------------------------|---------------------------|--------------------------------------------|
|     | PROJECT                           | AN A                                                          | CAL SUPERFUND                       | SITE, WILMING             | TON, MA                                              | WE                           | ELL ID                                   | 3R-1                                                                   |                            | ]                         | COMPREHENSIVE ROUND                        |
|     | SAMPLE ID                         | 00                                                            | 13 R-1                              |                           | $\overline{}$                                        | SITE                         | TYPE                                     | Superfund                                                              |                            | ]                         | DATE 5/38/19                               |
|     | TIME                              | START [ 6                                                     | '30 EN                              | 1033                      |                                                      | JOB NUMBE                    | R                                        | 6107190016                                                             |                            | ]                         | BOTTLE TIME 1730                           |
|     | QC SAI                            | MPLE<br>CTED ID                                               | SETTINGS                            | TO TO                     | JREMENT POINT DP OF WELL RISER DP OF PROTECTIVE THER | CASING                       | PROTECTIVE<br>CASING STICK<br>(FROM GROU |                                                                        | FT.                        | PROTE<br>CASING<br>DIFFER | G/WELL 1-0                                 |
|     | INITIAL DE<br>TO WA               |                                                               | 3-20                                | FT. WELL (TOR)            |                                                      | FT.                          | PID<br>AMBIENT AIR                       | N/A                                                                    | PPM                        | WELL DIAMET               | 4                                          |
|     | FINAL DE<br>TO WA                 |                                                               | 0.00                                | FT. SCREE                 | 1 1 1 1 1 1                                          | FT.                          | PID WELL                                 | N/A                                                                    | 5514                       | WELL                      | YES NO N/A                                 |
|     | DRAWDO<br>VOLU<br>(final - in     | JME · (                                                       | Gich} or x 0.65 (4-inc              |                           | O OF DRAWDOWN I                                      |                              | MOUTH PRESSURE TO PUMP                   | N/A                                                                    | PPM                        | ] INTEGF                  | CASING COLLAR COLLAR                       |
|     | TOTAL \ PURI                      | GED                                                           | 68 ger minute) x time di            | iAL. uration (minutes)    | O 67<br>x 0.00026 gal/ml)                            |                              | REFILL<br>TIMER<br>SETTING               | N/A                                                                    | SEC.                       | DISCHA<br>TIMER<br>SETTIN | N/A SEC.                                   |
|     | PURGE DA                          | ATA                                                           |                                     |                           |                                                      |                              |                                          |                                                                        |                            |                           |                                            |
|     | TIME                              | DEPTH TO<br>WATER (ft.)<br>(0.3 ft.)                          | PURGE RATE<br>(ml/min)<br>(100-400) | TEMP.<br>(deg. C)<br>(3%) | SPEC. COND.<br>(µS/cm)<br>(3%)                       | pH (units)<br>(+/- 0.1 unit) | DISS. O2<br>(mg/L)<br>(10% > 0.5)        | TURBIDITY(NTU)<br>(10% if >5 NTU)*                                     | ORP/Eh (mV)<br>(+/- 10 mV) | SAMPLE<br>DEPTH (ft.)     | COMMENTS                                   |
| 11  | 1637                              | 8.40                                                          | 725                                 | Ville                     | 24100                                                | 13.10                        | 7.22                                     | 1.26                                                                   | ~}0.0                      | 46                        |                                            |
|     | 1647                              | 8.23                                                          | 300                                 | 11.41                     | अस्थिय                                               | 13.19                        | 504                                      | 1.93                                                                   | 7394                       | 46                        |                                            |
|     | 1659                              | 890                                                           | 160                                 | 1132                      | 20324                                                | 13.27                        | 681                                      | 1.93                                                                   | -321                       | 46                        | Vole-150                                   |
|     | 1705                              | 19:21                                                         | 100                                 | 11.00                     | 19847                                                | 13.72                        | 6.80                                     | רטול                                                                   | -17.3                      | 46                        |                                            |
|     | 1710                              | 19.75                                                         |                                     | 10.98                     | 19092                                                | 13.34                        | 1,62                                     | In                                                                     | -14.8                      | 46                        |                                            |
| -   | ( ) Del                           | 10,00                                                         | 150                                 | 10.98                     | 19684                                                | 13:30                        | 6.85                                     | 1,48                                                                   | -24.1                      | 76                        |                                            |
| ŀ   | 1110                              | 70,00                                                         | 130                                 |                           | - (OK)                                               | 13.51                        | 4.01                                     | 1. 6                                                                   |                            | - 1                       |                                            |
|     |                                   |                                                               |                                     |                           |                                                      |                              |                                          |                                                                        |                            |                           |                                            |
|     | TYPE C QE SIN X PEI               | NT DOCUMEN OF PUMP OF BLADDER OF BLADDER OF BLADDER RISTALTIC | l                                   |                           | R TEFLON LINED<br>SITY POLYETHYLEN                   | E                            | POI                                      | PUMP MATERIAL<br>LYVINYL CHLORIDE<br>AINLESS STEEL<br>ICON (Dedicated) |                            | ×                         |                                            |
| - 1 | ANALYTIC<br>To Be Collec          | AL PARAMET<br>cted                                            | ERS                                 |                           | THOD<br>MBER                                         |                              | ESERVATION<br>THOD                       | VOLUME<br>REQUIRED                                                     |                            | SAMPLE<br>COLLECTED       | 2                                          |
|     | vo                                | Cs<br>drazine, MMH, L                                         | JDMH                                |                           | 60C<br>d 8315 LC/MS/MS                               |                              | L / 4 DEG. C                             | 3 X 40 mL \                                                            |                            | □ VO                      | Cs<br>Irazine, MMH, UDMH                   |
|     | ND                                |                                                               |                                     |                           | dified - EPA 521                                     |                              | EG. C - no sunli                         | ×.                                                                     |                            | NDI                       |                                            |
|     |                                   | maldehyde<br>als (Al, Cr, Fe, l                               | Mn, Mg, Na, As)                     |                           | /-846 8315A<br>10C/6020A                             |                              | EG. C<br>ric Acid / 4 DEG.               |                                                                        | Amber Glass<br>Poly        |                           | maldehyde<br>TALS                          |
|     |                                   | solved Metals (/<br>avalent Chrom                             | Al, Cr, Fe, Mn, Mg,<br>ium (Cr+6)   | Na, As) 60°               | 10C/6020A<br>99                                      |                              | ric Acid / 4 DEG.<br>EG. C - no headsp   |                                                                        |                            |                           | SOLVED METALS (avalent Chromium (Cr+6)     |
|     | Am                                | monia                                                         |                                     |                           | A 350.1                                              | Sul                          | furic Acid / 4 DE                        | G. C 1 X 250 mL                                                        | Poly                       | Amı                       | monia                                      |
|     |                                   | ons (Chloride & ecific Gravity                                | Sulfate)                            | 300<br>SM                 | 0.0<br>12710F                                        |                              | EG. C<br>EG. C                           | 1 X 125 mL<br>1 X 500 mL                                               |                            | =                         | ons (Chloride & Sulfate)<br>ecific Gravity |
|     | PF                                | AS                                                            |                                     | Мо                        | dified - EPA 537                                     | < 6                          | DEG. C                                   | 2 X 250 mL                                                             | HDPE                       | PF                        | AS                                         |
|     | PURGE OF<br>PURGE WA<br>CONTAINER |                                                               | _                                   | NUMBER OF G.<br>GENERATED | ALLONS )                                             | 58                           | LOCATIONS                                | KETCH See                                                              | 5,70                       | MP                        | A .                                        |
|     | NOTES                             |                                                               |                                     |                           |                                                      |                              |                                          |                                                                        |                            |                           |                                            |
|     |                                   |                                                               | s are < 5 NTU, the                  |                           |                                                      |                              |                                          |                                                                        |                            |                           |                                            |
|     | ır i urbidity                     | IS > 25 NTU I                                                 | then collect a filt                 | ered metals sai           | пріе                                                 |                              |                                          |                                                                        |                            |                           | wood.                                      |
|     | Sampled by:<br>Sampler Sig        | nature:                                                       | w                                   |                           |                                                      | Che                          | ecked by:                                | mk                                                                     |                            |                           |                                            |

| WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DI INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| FIELD DATA RECORD - LOW FLOW GROUNDWATER SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| cot MA IIII-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LL ID COMPREHENSIVE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| SAMPLE ID CONTROL SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| TIME START 1098 END 1197 JOB NUMBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R 6107190016 BOTTLE TIME (1/3°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| WATER LEVEL / PUMP SETTINGS  QC SAMPLE COLLECTED ID  MEASUREMENT POINT  X TOP OF WELL RISER TOP OF PROTECTIVE CASING OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PROTECTIVE CASING STICKUP (FROM GROUND)  PROTECTIVE CASING/WELL DIFFERENCE  A  C  T  T  T  T  T  T  T  T  T  T  T  T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| INITIAL DEPTH TO WATER FT. WELL DEPTH 39 FT. (TOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PID AMBIENT AIR N/A PPM DIAMETER 1/4 IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| FINAL DEPTH TO WATER  FT. SCREEN LENGTH FT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PID WELL WELL YES NO N/A MOUTH N/A PPM INTEGRITY: CAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| DRAWDOWN VOLUME (final - initial x 0.16 {2-inch} or x 0.65 {4-inch})  RATIO OF DRAWDOWN VOLUME TO TOTAL VOLUME PURGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PRESSURE TO PUMP N/A PSI COLLAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REFILL TIMER N/A SEC. TIMER SETTING  DISCHARGE TIMER N/A SEC. SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| PURGE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SETTING SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| DEPTH TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DISS. 02<br>(mg/L)<br>(10% > 0.5) TURBIDITY(NTU) ORP/Eh (mV) SAMPLE<br>(10% > 0.5) (10% if >5 NTU)* (+/- 10 mV) COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 1057 Nm 150 1291 87034 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 624 1/26 1249 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 105 NW 160 1996 2003 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 834 170 DCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 105 hm 150 1317 87732 3:76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 204 0,51 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 110 NM 150 1310 87617 3.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.63 0.37 175.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 111 nm 150 13.04 87670 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 159 036 1733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 1120 nm 140 13.01 87623 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1147 018 1101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 1100 13.00 875 3.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,48 0.18 168.6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| EQUIPMENT DOCUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| TYPE OF PUMP TYPE OF TUBING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TYPE OF PUMP MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| QED BLADDER TEFLON OR TEFLON LINED  SIMCO BLADDER X HIGH DENSITY POLYETHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | POLYVINYL CHLORIDE STAINLESS STEEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| X PERISTALTIC LDPE (Dedicated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X SILICON (Dedicated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ESERVATION VOLUME SAMPLE THOD REQUIRED COLLECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L / 4 DEG. C 3 X 40 mL VOC vial VOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| The state of the s | etate Buffer 2 X 40 mL VOC vial Hydrazine, MMH, UDMH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EG. C - no sunlight 2 X 1L Amber Glass NDMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EG. C       2 X 250mL Amber Glass       Formaldehyde         ic Acid / 4 DEG. C       1 X 250 mL Poly       METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ic Acid / 4 DEG. C 1 X 250 mL Poly DISSOLVED METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| The second of th | EG. C - no headspace 1 X 250 mL Poly Hexavalent Chromium (Cr+6)  furic Acid / 4 DEG. C 1 X 250 mL Poly Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EG. C 1 X 125 mL Poly Anions (Chloride & Sulfate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EG. C 1 X 500 mL Poly Specific Gravity  DEG. C 2 X 250 mL HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| PURGE OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LOCATION SKETCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| PURGE WATER NUMBER OF GALLONS \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The way of the same of the sam |  |  |  |  |
| NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | see site may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| * = If 3 turbidity readings are < 5 NTU, then parameter is stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pure water 912en/Efferves out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| If Turbidity is > 25 NTU then collect a filtered metals sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stown actua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| any well come                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | wood.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Sampled by: Sampler Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | come Multi-Port Well June HI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |

| WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS, INC. FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT OLIN CHEMICAL SUPERFUND SITE, WILMINGTON, MA WELL ID MP-1-1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COMPREHENSIVE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SAMPLE ID OC-MP-1±H SITE TYPE Superfund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATE 5/29/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TIME START 917 END 1032 JOB NUMBER 6107190016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BOTTLE TIME 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WATER LEVEL / PUMP SETTINGS  QC SAMPLE COLLECTED ID  MEASUREMENT POINT  X TOP OF WELL RISER TOP OF PROTECTIVE CASING STICKUP OTHER OTHER  (FROM GROUND)  7 3 7 FT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PROTECTIVE CASING/WELL DIFFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| INITIAL DEPTH TO WATER FT. WELL DEPTH 29 PID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WELL i/u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FINAL DEPTH TO WATER  (TOR)  FT. AMBIENT AIR  N/A  PPM  FT. SCREEN  PID WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DIAMETER NO N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INTEGRITY: CAP  CASING  LOCKED  COLLAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TOTAL VOL. PURGED GAL.  REFILL TIMER N/A SEC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DISCHARGE N/A SEC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/ml) SETTING  PURGE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DEPTH TO   PURGE RATE   TEMP.   SPEC. COND.   pH (units)   DISS. 02   TURBIDITY(NTU)   ORP/Eh (m// IMB   WATER (ft.)   (ml/min)   (deg. C)   (us/cm)   (v// 0.1 min)   (deg. C)   (us/cm)   (v// 0.1 min)   (deg. C)   (de | * I (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) |
| (0.3 ft.) (100-400) (3%) (3%) (47-6.1 till) (10% > 0.5) (10% ii > 5 (10) (47-10 iii))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 975 JUAN 160 1760 C226 200 782 623 1276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 935 NM 100 1260 866 1 3.91 N.67 3.30 W.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 940 Nm 50 1271 6582 3.85 3.88 0.46 1067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 141 Mm 120 1378 6244 3.83 8.81 0.35 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 950 nm 150 1230 6507 382 215- 039 487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 954 hm 150 1195 6493 3.83 1.75 0.57 982 1000 hm 150 1291 6420 3.83 1.48 0.27 949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1005 mm 150 22 6441 382 626 0-21 941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1010 Mm 120 1284 G421 382 1.20 0.19 913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1010 Mm 1(~ 12.86 6707 3.82 1.15 0.56 84.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EQUIPMENT DOCUMENTATION  TYPE OF PUMP  TYPE OF TUBING  TYPE OF PUMP MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| QED BLADDER TEFLON OR TEFLON LINED POLYVINYL CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SIMCO BLADDER  X HIGH DENSITY POLYETHYLENE  STAINLESS STEEL  X PERISTALTIC  LDPE (Dedicated)  X SILICON (Dedicated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ANALYTICAL PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| To Be Collected METHOD PRESERVATION VOLUME NUMBER METHOD REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLE<br>COLLECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VOCs 8260C HCL / 4 DEG. C 3 X 40 mL VOC vial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Hydrazine, MMH, UDMH Mod 8315 LC/MS/MS Acetate Buffer 2 X 40 mL VOC vial  NDMA Modified - EPA 521 4 DEG. C - no sunlight 2 X 1L Amber Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hydrazine, MMH, UDMH NDMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Formaldehyde SW-846 8315A 4 DEG. C 2 X 250mL Amber Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Formaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Metals (AI, Cr, Fe, Mn, Mg, Na, As) 6010C/6020A   Nitric Acid / 4 DEG. C 1 X 250 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | METALS DISSOLVED METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dissolved Metals (Al, Cr, Fe, Mn, Mg, Na, As) 6010C/6020A Nitric Acid / 4 DEG. C 1 X 250 mL Poly  Hexavalent Chromium (Cr+6) 7199 4 DEG. C - no headspace 1 X 250 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hexavalent Chromium (Cr+6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ammonia EPA 350.1 Sulfuric Acid / 4 DEG. C 1 X 250 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Anions (Chloride & Sulfate) 300.0 4 DEG. C 1 X 125 mL Poly  Specific Gravity SM2710F 4 DEG. C 1 X 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Anions (Chloride & Sulfate)  Specific Gravity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Specific Gravity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PFAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PURGE OBSERVATIONS  PURGE WATER  NUMBER OF GALLONS  LOCATION SKETCH See SAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | who                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CONTAINERIZED YES NO GENERATED MICONEIL # 1 ZULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NOTES *= If 3 turbidity readings are < 5 NTU, then parameter is stable  Level hat measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| If Turbidity is > 25 NTU then collect a filtered metals sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| *= If 3 turbidity readings are < 5 NTU, then parameter is stable  If Turbidity is > 25 NTU then collect a filtered metals sample  Sampled by: Sampled by: Sampled Signature:  Checked by:  Checked by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wood.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sampled by: Checked by: Checked by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS, INC.                                                                         |                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| FIELD DATA RECORD - LOW FLOW GROUNDWATER SA                                                                               | AMPLING                                                                                                                     |
| PROJECT OLIN CHEMICAL SUPERFUND SITE, WILMINGTON, MA                                                                      | WELL ID MPA 419 COMPREHENSIVE ROUND                                                                                         |
| SAMPLE ID OC-MP-1414-XXX                                                                                                  | SITE TYPE Superfund DATE 5/34/14                                                                                            |
| 912                                                                                                                       | 9,0                                                                                                                         |
|                                                                                                                           | MBER 010/190016 BOTTLE TIME 10                                                                                              |
| WATER LEVEL / PUMP SETTINGS  QC SAMPLE COLLECTED ID  MEASUREMENT POINT X TOP OF WELL RISER TOP OF PROTECTIVE CASING OTHER | PROTECTIVE CASING STICKUP (FROM GROUND)  PROTECTIVE CASING / WELL DIFFERENCE  CASING / WELL DIFFERENCE                      |
| INITIAL DEPTH TO WATER FT. WELL DEPTH 39                                                                                  |                                                                                                                             |
| FINAL DEPTH TO WATER FT. SCREEN SCREEN                                                                                    | PID AMBIENT AIR N/A PPM DIAMETER IN.  PID WELL YES NO N/A                                                                   |
| DRAWDOWN VOLUME GAL. RATIO OF DRAWDOWN VOLUME                                                                             | MOUTH N/A PPM INTEGRITY: CAP                                                                                                |
| (final - initial x 0.16 (2-inch) or x 0.65 (4-inch)) TO TOTAL VOLUME PURGED                                               | TO PUMP N/A PSI COLLAR                                                                                                      |
| TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/ml)                        | REFILL TIMER N/A SEC. SETTING DISCHARGE TIMER N/A SEC. SETTING                                                              |
| PURGE DATA                                                                                                                |                                                                                                                             |
| TIME DEPTH TO WATER (ft.) (ml/min) (deg. C) (μS/cm) (+/- 0.1 (100-400) (3%) (3%)                                          |                                                                                                                             |
| 824 Begin Purge 1242 1112 20                                                                                              | 6 2 /3 11 4 2/2 11/                                                                                                         |
| 936 AM 190 1216 904 67                                                                                                    |                                                                                                                             |
| 84 nm 150 12 21 854 67                                                                                                    | 334 100 111                                                                                                                 |
| 346 nm 15 1244 834 67                                                                                                     | 1 3.04 69 691                                                                                                               |
| 851 mm 10 1340 826 67                                                                                                     |                                                                                                                             |
| 856 hm 150 1206 813 67                                                                                                    | 0 339 5.4) 732                                                                                                              |
| got hm 150 12.06 \$13 67                                                                                                  | 0 239 229 81.5 1                                                                                                            |
|                                                                                                                           |                                                                                                                             |
|                                                                                                                           |                                                                                                                             |
|                                                                                                                           |                                                                                                                             |
| EQUIPMENT DOCUMENTATION                                                                                                   |                                                                                                                             |
| TYPE OF PUMP TYPE OF TUBING  QED BLADDER TEFLON OR TEFLON LINED                                                           | TYPE OF PUMP MATERIAL POLYVINYL CHLORIDE                                                                                    |
| SIMCO BLADDER X HIGH DENSITY POLYETHYLENE                                                                                 | STAINLESS STEEL                                                                                                             |
| X PERISTALTIC LDPE (Dedicated)                                                                                            | X SILICON (Dedicated)                                                                                                       |
| ANALYTICAL PARAMETERS           To Be Collected         METHOD           NUMBER                                           | PRESERVATION VOLUME SAMPLE METHOD REQUIRED COLLECTED                                                                        |
| VOCs 8260C                                                                                                                | HCL / 4 DEG. C 3 X 40 mL VOC vial VOCs                                                                                      |
| Hydrazine, MMH, UDMH Mod 8315 LC/MS/MS                                                                                    | Acetate Buffer 2 X 40 mL VOC vial Hydrazine, MMH, UDMH                                                                      |
| NDMA Modified - EPA 521 Formaldehyde SW-846 8315A                                                                         | 4 DEG. C - no sunlight 2 X 1L Amber Glass NDMA  4 DEG. C 2 X 250mL Amber Glass Formaldehyde                                 |
| Metals (Al, Cr, Fe, Mn, Mg, Na, As) 6010C/6020A                                                                           | Nitric Acid / 4 DEG. C 1 X 250 mL Poly METALS                                                                               |
| Dissolved Metals (AI, Cr, Fe, Mn, Mg, Na, As) 6010C/6020A  Hexavalent Chromium (Cr+6) 7199                                | Nitric Acid / 4 DEG. C 1 X 250 mL Poly DISSOLVED METALS  4 DEG. C - no headspace 1 X 250 mL Poly Hexavalent Chromium (Cr+6) |
| Hexavalent Chromium (Cr+6) 7199 Ammonia EPA 350.1                                                                         | 4 DEG. C - no headspace 1 X 250 mL Poly Hexavalent Chromium (Cr+6)  Sulfuric Acid / 4 DEG. C 1 X 250 mL Poly Ammonia        |
| Anions (Chloride & Sulfate) 300.0                                                                                         | 4 DEG. C 1 X 125 mL Poly Anions (Chloride & Sulfate)                                                                        |
| Specific Gravity SM2710F PFAS Modified - EPA 537                                                                          | 4 DEG. C 1 X 500 mL Poly Specific Gravity < 6 DEG. C 2 X 250 mL HDPE PFAS                                                   |
| PURGE OBSERVATIONS                                                                                                        | LOCATION SKETCH See Ste Mo                                                                                                  |
| PURGE WATER CONTAINERIZED  YES  NO  GENERATED  O  O  O  O  O  O  O  O  O  O  O  O  O                                      | My Alba Carre                                                                                                               |
| NOTES                                                                                                                     | taken- (microwii) we water Lough                                                                                            |
| * = If 3 turbidity readings are < 5 NTU, then parameter is stable                                                         |                                                                                                                             |
| If Turbidity is > 25 NTU then collect a filtered metals sample                                                            | Effervescott 7 me 14                                                                                                        |
| Mailtalle Long                                                                                                            | Multi-Port Well Zone 14 Wood.                                                                                               |
| Sampled by: Sampler Signature:                                                                                            | Checked by:                                                                                                                 |
| Sampler Signature:                                                                                                        | an                                                                                                                          |

| WOOD ENVIRO                    |                         |                       |                           | ITIONS, INC.<br>ROUNDWAT                  | ER SAMI                      | PLING                                 |                                    |                            |                             |                                  |
|--------------------------------|-------------------------|-----------------------|---------------------------|-------------------------------------------|------------------------------|---------------------------------------|------------------------------------|----------------------------|-----------------------------|----------------------------------|
|                                |                         |                       | SITE, WILMINGTO           |                                           |                              |                                       | -W-10                              | DR                         | ]                           | COMPREHENSIVE DOLIND             |
| SAMPLE ID O                    | C-6-W                   | U -10                 | 0R-XX                     | <u> </u>                                  | SITE T                       |                                       | Superfund                          | <i>-</i>                   | ]                           | DATE COMPREHENSIVE ROUND         |
| TIME STAR                      | 130                     | (C)                   | 1430                      |                                           | JOB NUMBE                    |                                       | 6107190016                         |                            | Ì                           | BOTTLE TIME 1 1/20               |
| WATER LEVEL /                  |                         | TINGS                 |                           | REMENT POINT                              |                              |                                       |                                    |                            | -                           |                                  |
| QC SAMPLE<br>COLLECTED I       |                         | 0                     | то                        | P OF WELL RISER<br>P OF PROTECTIVE<br>HER | CASING                       | PROTECTIVE<br>CASING STIC             | KUP                                | 1 <sub>FT.</sub>           | PROTEC<br>CASING<br>DIFFERI | /WELL -0.1/                      |
| INITIAL DEPTH<br>TO WATER      | 5.5                     | 84 =                  | T. WELL D                 |                                           | ()                           | (FROM GROU                            | ind)                               | Г.                         | ] WELL                      | ENCE TEL.                        |
| FINAL DEPTH                    | 5.8                     | <i>و</i> ا            | (TOR)                     | d.                                        | Y FT.                        | AMBIENT AIR                           | N/A                                | PPM                        | DIAMET                      |                                  |
| TO WATER DRAWDOWN              | 3.0                     | , a                   | T. SCREEI                 |                                           | FT.                          | PID WELL<br>MOUTH                     | N/A                                | PPM                        | WELL<br>INTEGR              | YES NO N/A ITY: CAP — — — —      |
| VOLUME<br>(final - initial x ( | 0.16 (2-inch)           | or x 0.65 (4-inc      |                           | OF DRAWDOWN Y                             |                              | PRESSURE<br>TO PUMP                   | N/A                                | PSI                        | ]                           | LOCKED E E                       |
| TOTAL VOL.                     |                         | 2                     |                           | CAR                                       | v                            | REFILL                                | N/A                                | 050                        | DISCHA                      | 7777777                          |
| PURGED<br>(purge rate (mi      | illiliters per mi       | nute) x time du       | ration (minutes) x        | 0.00026 gal/ml)                           | 4                            | TIMER<br>SETTING                      | N/A                                | SEC.                       | SETTING                     | N/A SEC.                         |
| PURGE DATA                     | РТН ТО ТР               | PURGE RATE            | TEMP.                     | SPEC. COND.                               |                              | DISS. O2                              |                                    | T                          |                             |                                  |
| TIME WA                        | TER (ft.)<br>0.3 ft.)   | (ml/min)<br>(100-400) | (deg. C)<br>(3%)          | (μS/cm)<br>(3%)                           | pH (units)<br>(+/- 0.1 unit) | (mg/L)<br>(10% > 0.5)                 | TURBIDITY(NTU)<br>(10% if >5 NTU)* | ORP/Eh (mV)<br>(+/- 10 mV) | SAMPLE<br>DEPTH (ft.)       | COMMENTS                         |
| 100                            | 360-17                  | - Kyr                 | 1009                      | 1075                                      | 5.83                         | 0.00                                  | ~7/1 ~7                            | -332                       | 317                         |                                  |
|                                | 86                      | 160                   | 10.31                     | 665                                       | 6,07                         | 9.50                                  | 9.88                               | -10.6                      | 27                          |                                  |
| 13 76 5                        | 86                      | 190                   | 10.41                     | 531                                       | 6.17                         | 1.35                                  | 2133                               | -18.9                      | 24                          |                                  |
|                                | 86                      | 120                   | 10.35                     | 381                                       | 6.33                         | 1,63                                  | 5.96                               | -18.0                      | 74                          |                                  |
|                                | 86                      | 160                   | 10.94                     | 327                                       | 6,19                         | 1.66                                  | 3.39                               | -18.8                      | 24                          |                                  |
|                                | 56                      | 150                   | 1073                      | 383                                       | 618                          | 1.61                                  | 2.70                               | -314                       | 24                          |                                  |
|                                | 36                      | 150                   | 1030                      | 364                                       | 6.28                         | 1.50                                  | 1,05                               | -35.8                      | 24                          |                                  |
| 1916 5.                        | 40                      | 150                   | 10.40                     | 76 1                                      | 6.28                         | 1.10                                  | ((1)                               | 3319                       | <i>p</i> 7                  |                                  |
|                                |                         |                       |                           |                                           |                              |                                       |                                    |                            |                             |                                  |
| EQUIPMENT DO                   |                         |                       | TYPE OF TUBIN             | 3                                         |                              | TYPE OF                               | PUMP MATERIAL                      |                            |                             |                                  |
| QED BLA                        | DDER                    |                       | TEFLON OF                 | R TEFLON LINED                            |                              | PO                                    | LYVINYL CHLORIDE                   |                            |                             |                                  |
| X PERISTAL                     |                         |                       | X HIGH DENS               | ITY POLYETHYLEN<br>cated)                 | E                            |                                       | AINLESS STEEL  ICON (Dedicated)    |                            |                             |                                  |
| ANALYTICAL PA                  | RAMETERS                | 3                     |                           | TUOD.                                     | 5.5                          | EOEDWATION.                           | VOLUME                             |                            | OAND 5                      |                                  |
| To Be Collected                |                         |                       |                           | THOD<br>MBER                              |                              | ESERVATION<br>THOD                    | VOLUME<br>REQUIRED                 |                            | SAMPLE<br>COLLECTED         |                                  |
| VOCs                           |                         |                       | 826                       |                                           |                              | L/4 DEG. C                            | 3 X 40 mL V                        |                            | Voc                         |                                  |
| Hydrazine,                     | , MMH, UDMI             | -1                    |                           | 8315 LC/MS/MS<br>lified - EPA 521         |                              | etate Buffer<br>EG. C - no sunl       | 2 X 40 mL V<br>ight 2 X 1L Amb     |                            | NDV                         | razine, MMH, UDMH<br>MA          |
| Formaldeh                      | nyde<br>, Cr, Fe, Mn, N | Ma Na As\             |                           | -846 8315A<br>DC/6020A                    |                              | EG. C                                 |                                    | Amber Glass                | Form                        | naldehyde                        |
|                                |                         | r, Fe, Mn, Mg, N      |                           | DC/6020A                                  |                              | ic Acid / 4 DEG                       |                                    | (8)                        |                             | SOLVED METALS                    |
| Hexavalen Ammonia              | nt Chromium (           | (Cr+6)                | 719:<br>EPA               | 9<br>. 350.1                              |                              | EG. C - no heads<br>furic Acid / 4 DE |                                    | 201                        | Hexa                        | avalent Chromium (Cr+6)<br>nonia |
| S-100                          | nloride & Sulfa         | ate)                  | 300                       |                                           |                              | EG. C                                 | 1 X 125 mL                         | Poly                       | _                           | ns (Chloride & Sulfate)          |
| Specific Gr                    | ravity                  |                       |                           | 710F<br>ified - EPA 537                   |                              | EG. C<br>DEG. C                       | 1 X 500 mL<br>2 X 250 mL           |                            | Spe                         | cific Gravity<br>AS              |
| PURGE OBSERV                   | /ATIONS                 |                       |                           |                                           |                              | LOCATION S                            | KETCH SEL                          | (10                        | 11.10                       |                                  |
| PURGE WATER<br>CONTAINERIZED   | YES                     |                       | NUMBER OF GA<br>GENERATED | LLONS 1.2                                 |                              | 0 x                                   |                                    | sile                       | yra p                       |                                  |
| NOTES                          |                         | 94 09694              | paratrioned baseline      | ) <del></del>                             |                              | 7 110h                                | s odur                             | r 1                        | 7 .                         | 17 .                             |
| * = If 3 turbidity re          | eadings are             | e < 5 NTU, the        | en parameter is           | stable                                    | f                            | write                                 | water is                           | Lo lord                    | 1 7e                        | 1100                             |
| If Turbidity is > 2            | 5 NTU then              | collect a filte       | ered metals sam           | ple                                       |                              |                                       |                                    |                            |                             |                                  |
|                                | well                    | Lowin                 | •                         |                                           |                              |                                       |                                    |                            |                             | Wood.                            |
| Sampled by:                    | . N. 1 A                | 11 ha                 |                           |                                           | Che                          | ecked by: CT                          | m                                  |                            |                             | 0                                |
| Sampler Signature:             | MMA                     | NIV                   |                           |                                           |                              |                                       |                                    |                            |                             |                                  |

|                        |                         |                   |                 |                                      | ER SAMI                           | PLING                                   |                               |                         |      |                          |         |                   |            |
|------------------------|-------------------------|-------------------|-----------------|--------------------------------------|-----------------------------------|-----------------------------------------|-------------------------------|-------------------------|------|--------------------------|---------|-------------------|------------|
| PROJECT                | OLIN CHEMICA            | AL SUPERFUND      | SITE, WILMINGT  | ON, MA                               | WE                                | LLID GI                                 | W-15                          |                         | ]    |                          | COMF    | REHENSIVE R       | DUND       |
| SAMPLE ID              | E ID                    |                   |                 |                                      |                                   | TYPE                                    | Superfund                     |                         | ]    |                          |         | DATE S            | 28/2019    |
| TIME                   |                         |                   | 1/00            |                                      | JOB NUMBE                         | R                                       | 6107190016                    |                         |      |                          | вотт    | TLE TIME 15       | 1:57       |
| QC SAM                 | MPLE                    | ETTINGS           | X TO            | P OF WELL RISER<br>P OF PROTECTIVE ( | CASING                            | PROTECTIVE<br>CASING STIC<br>(FROM GROU |                               | FT.                     | C    | ROTEC<br>ASING           | / WEL   | L 0.39            | FT.        |
| INITIAL DEF            |                         | 01 F              |                 |                                      |                                   | PID                                     |                               |                         | ] w  | /ELL                     |         | 3"                | •          |
| FINAL DEF              | 1/1                     | 50                |                 | 10.5                                 | FT.                               | AMBIENT AIR                             | N/A                           | PPM                     |      | IAMETE                   | ER      | YES               | IN. NO N/A |
| DRAWDO                 |                         | (0)               | LENGT           | H GIOIC S                            | FT.                               | MOUTH                                   | N/A                           | PPM                     |      | NTEGRI                   | CA      | CAP 💥             |            |
|                        |                         |                   |                 |                                      |                                   | PRESSURE<br>TO PUMP                     | N/A                           | PSI                     |      |                          |         | LLAR X            |            |
| PURG                   | GED 3                   | - 4               | 714.            |                                      |                                   | REFILL<br>TIMER<br>SETTING              | N/A                           | SEC.                    | Т    | ISCHAI<br>IMER<br>ETTING |         | N/A               | SEC.       |
| PURGE DA               |                         |                   |                 |                                      |                                   |                                         |                               |                         |      |                          |         |                   |            |
| TIME                   | WATER (ft.)             | (ml/min)          | (deg. C)        | pH (units)<br>(+/- 0.1 unit)         | DISS. O2<br>(mg/L)<br>(10% > 0.5) | TURBIDITY(NTU)<br>(10% if >5 NTU)*      | ORP/Eh (mV)<br>(+/- 10 mV)    | SAM                     |      |                          | СОММЕ   | ENTS              |            |
| 1430                   | /                       | /                 | 1               | 1                                    | /                                 | 1                                       | 1                             | /                       | /    |                          | BE      | GIN PUR           |            |
| 1435                   |                         |                   |                 |                                      | 5.66                              | 1.18                                    | 48.4                          | 126.4                   | NI   | -                        |         |                   |            |
| 1440                   |                         |                   |                 |                                      | 5.65                              | 0.97                                    | 88.5                          | 134.4                   | -1   |                          | ORA     | NGE FLOC          | -          |
| 1445                   |                         |                   | -               |                                      | 5.60                              | 0.92                                    | 51.3                          | 141.4                   |      |                          |         | }                 |            |
| 1455                   |                         |                   |                 |                                      | 5.59                              | 0.77                                    | 37.7                          | 147.3                   |      |                          |         |                   |            |
| 1500                   |                         |                   |                 |                                      | 5.62                              | 1.07                                    | 53.1                          | 152.6                   |      |                          |         |                   |            |
| 1505                   |                         |                   |                 |                                      | 5.64                              | 1.71                                    | 22.8                          | 151.2                   |      |                          |         |                   |            |
| 1510                   | 10.56                   | 125               |                 | 0.062                                | 5.63                              | 2.40                                    | 23.2                          | 144.9                   |      |                          |         |                   |            |
| 1515                   | 10.51                   | 100               |                 | 0.061                                | 5.63                              | 2.49                                    | 22.9                          | 143.8                   |      |                          |         |                   |            |
| 1520                   |                         |                   |                 |                                      | 5.62                              | 2.32                                    | 17.3                          | 144.0                   | 1    | ,                        |         |                   |            |
| 1525                   |                         |                   | 10.46           | 0.061                                | 5.87                              | 1.96                                    | 38.3                          | 135.6                   | •    |                          |         |                   |            |
|                        |                         | ATION             | TYPE OF TURIN   | G                                    |                                   | TYPE OF                                 | PUMP MATERIAL                 |                         |      |                          |         |                   |            |
|                        |                         |                   |                 |                                      |                                   |                                         | LYVINYL CHLORIDE              |                         |      |                          |         |                   |            |
|                        |                         |                   | =               |                                      | ≣                                 | ST                                      | AINLESS STEEL                 |                         | -lac | 1                        | - h     | co - 1-0          |            |
|                        |                         |                   | LDPE (Dedi      | cated)                               |                                   | X SIL                                   | ICON (Dedicated)              | NEW 03                  | 128  | 1200                     | P       | re gapt           |            |
| To Be Collec           |                         | RS                |                 |                                      |                                   | ESERVATION<br>THOD                      | VOLUME<br>REQUIRED            |                         |      | IPLE<br>ECTED            |         |                   |            |
| voo                    | Os                      |                   | 826             | 0C                                   | нс                                | L/4 DEG. C                              | 3 X 40 mL V                   | OC vial                 |      | ∐voc                     | s       |                   |            |
| 1 生                    |                         | МН                | Mod             | 8315 LC/MS/MS                        | Ace                               | etate Buffer                            | 2 X 40 mL V                   | OC vial                 |      | Hydr                     | azine,  | ММН, UDMH         |            |
|                        |                         |                   |                 |                                      |                                   | EG. C - no sunl<br>EG. C                |                               | er Glass<br>Amber Glass | =    | NDM                      |         | uda               |            |
|                        |                         | n, Mg, Na, As)    |                 |                                      |                                   | ric Acid / 4 DEG.                       |                               |                         | H    | MET.                     |         | yue               |            |
|                        |                         |                   | Na, As) 601     | 0C/6020A                             | Nitr                              | ric Acid / 4 DEG.                       | C 1 X 250 mL                  | Poly                    | 4    | DISS                     | OLVE    | D METALS          |            |
| =                      |                         | n (Cr+6)          |                 |                                      |                                   | EG. C - no heads                        |                               |                         | 4    | =                        |         | t Chromium (Cr+   | 6)         |
|                        |                         | ulfate)           |                 |                                      |                                   | furic Acid / 4 DE<br>EG. C              | G. C 1 X 250 mL<br>1 X 125 mL | 421 B                   | H    | Amm                      |         | loride & Sulfate) |            |
| Spec                   | cific Gravity           |                   | SM2             | ?710F                                |                                   | EG. C                                   | 1 X 500 mL                    |                         | Ī    | Spec                     | ific Gr |                   |            |
| ₩ PFA                  | PFAS Modified - EPA 537 |                   |                 |                                      |                                   | DEG. C                                  | 2 X 250 mL                    | HDPE                    | 5    | ₹ PFA                    | S       |                   |            |
| PURGE OB               | SERVATIONS              |                   |                 |                                      |                                   | LOCATION S                              | KETCH                         |                         |      |                          |         |                   |            |
| PURGE WAT<br>CONTAINER |                         |                   |                 | 3.5g4                                |                                   |                                         |                               |                         |      |                          |         |                   |            |
| NOTES                  | -156                    | pr 1 may 1        |                 |                                      |                                   |                                         |                               |                         |      |                          |         |                   |            |
|                        |                         |                   | en parameter is |                                      |                                   |                                         |                               |                         |      |                          |         |                   |            |
| III Turbialty          | 13 2 43 IN I U THE      | on conect a fifte | ered metals sam | hie                                  |                                   |                                         |                               |                         |      |                          |         |                   |            |
|                        |                         |                   |                 |                                      |                                   |                                         |                               |                         |      |                          | WO      | Od.               |            |
| Sampled by:            | IANDESJ                 | 9RLAS             |                 |                                      | Che                               | ecked by:                               | m                             |                         |      |                          |         | 7 7               |            |
| Sampler Sign           |                         | 02                |                 |                                      |                                   |                                         | 9.5                           |                         |      |                          |         |                   |            |

|                                    |                                           |                                     | JCTURE SOLU<br>N FLOW G   | JTIONS, INC.<br>ROUNDWAT                  | ER SAMI                      | PLING                                   |                                    |                            |                           |                                            |
|------------------------------------|-------------------------------------------|-------------------------------------|---------------------------|-------------------------------------------|------------------------------|-----------------------------------------|------------------------------------|----------------------------|---------------------------|--------------------------------------------|
| PROJECT                            | OLIN CHEMICA                              | AL SUPERFUND                        | SITE, WILMINGTO           | ON, MA                                    | WE                           | LLID GU                                 | 1-15                               |                            | ]                         | COMPREHENSIVE ROUND                        |
| SAMPLE ID                          |                                           | J-15-X>                             |                           |                                           | SITE                         |                                         | Superfund                          |                            | ĺ                         | DATE 05/28/2019                            |
| TIME                               | START 142                                 |                                     | 1620                      |                                           | JOB NUMBE                    | R                                       | 6107190016                         |                            | ]                         | BOTTLE TIME 15:57                          |
| Annual Annual Control of Cold Con- | EVEL / PUMP SE                            | ETTINGS                             |                           | REMENT POINT                              |                              | DDOTEOTIVE                              |                                    |                            | DDOTE                     | OTIVE                                      |
| QC SAN<br>COLLEC                   | CTED ID                                   | /                                   | ТО                        | P OF WELL RISER<br>P OF PROTECTIVE<br>HER | CASING                       | PROTECTIVE<br>CASING STIC<br>(FROM GROU | KUP / OCT                          | FT.                        | PROTE<br>CASING<br>DIFFER | G/WELL CO 2G                               |
| INITIAL DE                         |                                           | .0) F                               | T. WELL D                 |                                           |                              | PID                                     |                                    |                            | )<br>] WELL               |                                            |
| FINAL DE                           |                                           | 50                                  | (TOR)                     | 18.3                                      | FT.                          | AMBIENT AIR                             | N/A                                | PPM                        | DIAMET                    |                                            |
| TO WA                              | NA/AL                                     |                                     | T. SCREET                 | /                                         | FT.                          | PID WELL<br>MOUTH                       | N/A                                | PPM                        | WELL<br>INTEGF            | YES NO N/A  RITY: CAP 2                    |
| DRAWDO<br>VOLU<br>(final - ir      | IME O                                     | 9 G/<br>h) or x 0.65 {4-inc         |                           | O OF DRAWDOWN V                           |                              | PRESSURE<br>TO PUMP                     | N/A                                | PSI                        |                           | LOCKED COLLAR                              |
| TOTAL \                            |                                           | 5 g/                                | AL.                       | 0.26                                      |                              | REFILL<br>TIMER                         | N/A                                | SEC.                       | DISCHA<br>TIMER           | ARGE N/A SEC.                              |
|                                    |                                           |                                     | ration (minutes) x        | 0.00026 gal/ml)                           |                              | SETTING                                 |                                    |                            | SETTIN                    |                                            |
| PURGE DA                           | ATA DEPTH TO                              | PURGE RATE                          | TEMP.                     | SPEC. COND.                               | 1                            | DISS. O2                                |                                    | T                          |                           |                                            |
| TIME                               | WATER (ft.)<br>(0.3 ft.)                  | (ml/min)<br>(100-400)               | (deg. C)<br>(3%)          | (μS/cm)<br>(3%)                           | pH (units)<br>(+/- 0.1 unit) | (mg/L)<br>(10% > 0.5)                   | TURBIDITY(NTU)<br>(10% if >5 NTU)* | ORP/Eh (mV)<br>(+/- 10 mV) | SAMPLE<br>DEPTH (ft.)     | COMMENTS                                   |
|                                    | DFRIM                                     | PG 10 \$2                           | 1                         | 6.27                                      | V 27                         | 0 ::0                                   | 20.0                               |                            | -                         | 1                                          |
| 1530                               | 10,50                                     | 100                                 | 10.57                     | 0.076                                     | 5.87                         | 3.03                                    | 35.2<br>39.1                       | 133.5                      |                           |                                            |
| 1540                               | 10.50                                     | 100                                 | 10.51                     | 0.075                                     | 5.85                         | 3.12                                    | 41.4                               | 125.2                      |                           |                                            |
| 1545                               | 10.50                                     | 100                                 | 10.52                     | 0.076                                     | 5.84                         | 2.04                                    | 46.0                               | 123.5                      | 1                         |                                            |
| 1550                               | 10.50                                     | 100                                 | 10.51                     | 0.076                                     | 5.87                         | 2.01                                    | 49.0                               | 120.4                      |                           |                                            |
| 1555                               | 10.50                                     | 100                                 | 10.59                     | 0.080                                     | 5.43                         | 2.06                                    | 47.0                               | 119.0                      | ~16                       | Could Sampy                                |
| 1                                  | /                                         | /                                   |                           |                                           | /                            |                                         |                                    |                            | 10                        | 2                                          |
|                                    |                                           |                                     |                           |                                           |                              |                                         |                                    |                            |                           |                                            |
|                                    |                                           |                                     |                           |                                           |                              |                                         |                                    |                            |                           |                                            |
| /                                  | /                                         | ı                                   | /                         | - (                                       |                              | <u> </u>                                | 1                                  | /                          | /                         | /                                          |
|                                    | IT DOCUMENT.<br>F PUMP                    | ATION                               | TYPE OF TUBIN             | <u>G</u>                                  |                              | TYPE OF                                 | PUMP MATERIAL                      |                            |                           |                                            |
|                                    | D BLADDER                                 |                                     |                           | R TEFLON LINED                            |                              |                                         | LYVINYL CHLORIDE                   |                            |                           |                                            |
|                                    | ICO BLADDER<br>RISTALTIC                  |                                     | X HIGH DENS               | SITY POLYETHYLEN cated)                   | E                            | X SIL                                   | AINLESS STEEL  ICON (Dedicated)    | 1E10 05/                   | 28/2014                   | PER RAPP                                   |
|                                    | AL PARAMETE                               | RS                                  |                           | rhod                                      | PRI                          | ESERVATION                              | VOLUME                             | 1000                       | SAMPLE                    | 10100011                                   |
| 1                                  |                                           |                                     | NUM                       | MBER                                      |                              | THOD                                    | REQUIRED                           |                            | COLLECTED                 | 2                                          |
| Voc                                |                                           | NA. I                               | 826<br>Mar                |                                           |                              | L / 4 DEG. C                            | 3 X 40 mL V                        |                            | Voc                       |                                            |
| Hayo                               | Irazine, MMH, UD<br>MA                    | IVII                                |                           | I 8315 LC/MS/MS<br>lified - EPA 521       |                              | etate Buffer<br>EG. C - no suni         | 2 X 40 mL V<br>light 2 X 1L Amb    |                            | MNDI                      | drazine, MMH, UDMH<br>MA                   |
|                                    | maldehyde                                 |                                     |                           | -846 8315A                                |                              | EG. C                                   |                                    | Amber Glass                |                           | maldehyde                                  |
|                                    | als (Al, Cr, Fe, Mr<br>solved Metals (Al. | n, Mg, Na, As)<br>Cr, Fe, Mn, Mg, N |                           | 0C/6020A<br>0C/6020A                      |                              | ic Acid / 4 DEG<br>ic Acid / 4 DEG      |                                    |                            | D DIS                     | TALS<br>SOLVED METALS                      |
|                                    | avalent Chromiur                          |                                     | 719                       |                                           |                              | EG. C - no heads                        |                                    | 150                        | =                         | xavalent Chromium (Cr+6)                   |
| Amr                                |                                           | ulfata)                             |                           | 350.1                                     |                              | furic Acid / 4 DE                       |                                    |                            | =                         | monia                                      |
|                                    | ons (Chloride & Si<br>cific Gravity       | uliale)                             | 300.<br>SM2               | 710F                                      |                              | EG. C<br>EG. C                          | 1 X 125 mL<br>1 X 500 mL           | 170<br>170 IV              |                           | ons (Chloride & Sulfate)<br>ecific Gravity |
| ¥ PF/                              | AS                                        |                                     | Mod                       | ified - EPA 537                           | < 6                          | DEG. C                                  | 2 X 250 mL                         | HDPE                       | PF.                       | AS                                         |
| PURGE OB                           | SERVATIONS                                |                                     |                           |                                           |                              | LOCATION S                              | KETCH                              |                            |                           |                                            |
| PURGE WAT<br>CONTAINER             |                                           |                                     | NUMBER OF GA<br>GENERATED | 3.5g                                      | .11-                         |                                         |                                    |                            |                           |                                            |
| NOTES                              |                                           |                                     |                           |                                           |                              |                                         |                                    |                            |                           |                                            |
| * = If 3 turb                      | idity readings a                          | are < 5 NTU, the                    | n parameter is            | stable                                    |                              |                                         |                                    |                            |                           |                                            |
| If Turbidity                       | is > 25 NTU the                           | en collect a filte                  | red metals sam            | ple                                       |                              |                                         |                                    |                            |                           |                                            |
|                                    |                                           |                                     |                           |                                           |                              |                                         |                                    |                            |                           | wood.                                      |
| Sampled by:                        | I AN DESJA                                | RLAS                                |                           |                                           | Che                          | ecked by:                               |                                    |                            |                           | 11 000                                     |
| Sampler Sign                       |                                           | 2                                   |                           |                                           |                              | , ,                                     | (17)                               |                            |                           |                                            |

|                            |                                                              |                                     | N FLOW G                  | ROUNDWAT                                    | ER SAME                      | PLING                                   |                                    |                            |                           |                        |                                      |     |
|----------------------------|--------------------------------------------------------------|-------------------------------------|---------------------------|---------------------------------------------|------------------------------|-----------------------------------------|------------------------------------|----------------------------|---------------------------|------------------------|--------------------------------------|-----|
| PROJECT                    | OLIN CHEMICA                                                 | AL SUPERFUND                        | SITE, WILMINGT            | ON, MA                                      | WEL                          | LID GW                                  | -16R                               |                            | ]                         | COMPREH                | ENSIVE ROUND                         |     |
| SAMPLE ID                  | OC-GI                                                        | W-16R->                             | ×χχ                       |                                             | SITE T                       |                                         | Superfund                          |                            | j                         | DA                     | TE 5/28/2014                         | 9   |
| TIME                       | START 12:                                                    | 10 ENI                              | 1410                      |                                             | JOB NUMBER                   | 3                                       | 6107190016                         |                            |                           | BOTTLE T               | IME 13:47                            |     |
|                            | VEL / PUMP SE                                                | ETTINGS                             |                           | REMENT POINT                                |                              |                                         |                                    |                            |                           |                        |                                      |     |
| QC SAM<br>COLLEC           |                                                              | Section 1990                        | то                        | P OF WELL RISER<br>P OF PROTECTIVE (<br>HER | CASING                       | PROTECTIVE<br>CASING STIC<br>(FROM GROU |                                    | FT.                        | PROTE<br>CASING<br>DIFFER | G / WELL               | -0.27 FT.                            |     |
| INITIAL DEF                |                                                              | 79 F                                | T. WELL (                 | DEPTH 17.3                                  |                              | PID<br>AMBIENT AIR                      | N/A                                | PPM                        | WELL<br>DIAME             | TED (                  | 2'' IN.                              |     |
| FINAL DEF                  | TER 10.                                                      | 95 F                                | T. SCREE                  | N E                                         |                              | PID WELL                                |                                    |                            | WELL                      |                        | YES NO N                             | N/A |
| DRAWDO<br>VOLU             | ME 0.0                                                       |                                     |                           | OF DRAWDOWN V                               | /OLUME                       | MOUTH<br>PRESSURE                       | N/A                                | PPM                        | ] INTEGE                  | CASING<br>LOCKED       | $\frac{\overline{\lambda}}{\lambda}$ | _   |
| TOTAL V                    | /OI                                                          | h) or x 0.65 {4-inc                 |                           | TOTAL VOLUME PUI                            |                              | TO PUMP                                 | N/A                                | PSI                        | ] DISCH                   | COLLAR<br>ARGE         |                                      | _   |
| PURG<br>(purge ra          |                                                              | minute) x time du                   | AL. ration (minutes) x    | 0.003<br>0.00026 gal/ml)                    |                              | TIMER<br>SETTING                        | N/A                                | SEC.                       | TIMER<br>SETTIN           | IG                     | N/A SEC.                             |     |
| PURGE DA                   | 7000000                                                      |                                     |                           |                                             |                              |                                         |                                    |                            |                           |                        |                                      |     |
| TIME                       | DEPTH TO<br>WATER (ft.)<br>(0.3 ft.)                         | PURGE RATE<br>(ml/min)<br>(100-400) | TEMP.<br>(deg. C)<br>(3%) | SPEC. COND.<br>S/cm)<br>(3%)                | pH (units)<br>(+/- 0.1 unit) | DISS. O2<br>(mg/L)<br>(10% > 0.5)       | TURBIDITY(NTU)<br>(10% if >5 NTU)* | ORP/Eh (mV)<br>(+/- 10 mV) | SAMPLE<br>DEPTH (ft.)     |                        | COMMENTS                             |     |
| 1250                       | /                                                            | 200                                 | /                         | /                                           | /                            | /                                       |                                    |                            | ~15'                      |                        | PURCE                                |     |
| 1300                       |                                                              |                                     |                           |                                             |                              | 1.70                                    | 84.0                               | 42.5                       | -                         |                        | FLIWTHRU CELL                        |     |
| 1315                       | 15 10.93 150 11.56 0.188 6.5<br>115 10.93 150 11.51 0.189 6. |                                     |                           |                                             |                              | 1.56                                    | 17.0                               | aa.5<br>aa.a               |                           | 10000                  | TURBIDITY                            |     |
| 1320                       | 10.94                                                        | 150                                 | 11.39                     | 0.189                                       | 6.39                         | 1.18                                    | 12.0                               | 24.2                       |                           |                        |                                      |     |
| 1325                       | 10.94                                                        | 150                                 | 11.53                     | 0.188                                       | 6.40                         | 0.89                                    | 6.51                               | 27.1                       |                           |                        |                                      |     |
| 1330                       | 10.95                                                        | 150                                 | 11.60                     | 0-186                                       | 6.39                         | 0.92                                    | 4.54                               | 77.3                       |                           |                        |                                      |     |
| 1335                       | 10.95                                                        | 150                                 | 11.64                     | 0.186                                       | 6.40                         | 0.86                                    | 4.53                               | 28.)                       |                           |                        |                                      |     |
| 1340                       | 10.95                                                        | 150                                 | 11.60                     | 0.186                                       | 6.39                         | 0.3)                                    | 3.54                               | 27.9                       | 1                         |                        |                                      |     |
| 1345                       | 10,95                                                        | 150                                 | 11.60                     | / / / /                                     | 640                          | 0.87                                    | 3.02                               | 28.0                       |                           | COLANE                 | CTSAMPUR                             |     |
| (311                       |                                                              | -/                                  | /                         | /                                           | /                            |                                         |                                    |                            | 1                         | (0000                  | - C 353 pri 01-                      |     |
| EQUIPMEN                   | IT DOCUMENT                                                  | ATION                               |                           |                                             | '                            |                                         |                                    |                            |                           |                        |                                      |     |
| TYPE O                     |                                                              | •                                   | TYPE OF TUBIN             | _                                           |                              |                                         | PUMP MATERIAL                      |                            |                           |                        |                                      |     |
|                            | D BLADDER<br>ICO BLADDER                                     |                                     | =                         | R TEFLON LINED<br>BITY POLYETHYLEN          | E                            | · = ST.                                 | LYVINYL CHLORIDE<br>AINLESS STEEL  |                            | ,                         |                        |                                      |     |
| X PEF                      | RISTALTIC                                                    |                                     | LDPE (Dedi                | cated)                                      |                              | X SIL                                   | ICON (Dedicated) —                 | NEW 05                     | 28/19                     | PER O/                 | IPP                                  |     |
| ANALYTICA<br>To Be Collect | AL PARAMETE<br>ted                                           | RS                                  |                           | THOD<br>MBER                                |                              | ESERVATION<br>THOD                      | VOLUME<br>REQUIRED                 |                            | SAMPLE<br>COLLECTE        | 2                      |                                      |     |
| □ voc                      | 20                                                           |                                     | 826                       |                                             |                              | _/4 DEG. C                              |                                    |                            | □vo                       |                        |                                      |     |
|                            | os<br>Irazine, MMH, UD                                       | MH                                  |                           | 8315 LC/MS/MS                               |                              | tate Buffer                             | 3 X 40 mL V<br>2 X 40 mL V         |                            |                           | os<br>drazine, MMH     | , UDMH                               |     |
| NDN                        |                                                              |                                     | Mod                       | dified - EPA 521                            |                              | EG. C - no sunl                         | •                                  |                            | ND                        |                        |                                      |     |
|                            | maldehyde<br>als (Al, Cr, Fe, Mr                             | n Mo Na As)                         |                           | -846 8315A<br>0C/6020A                      |                              | EG. C<br>c Acid / 4 DEG                 |                                    | Amber Glass                |                           | maldehyde<br>TALS      |                                      |     |
|                            |                                                              | Cr, Fe, Mn, Mg, N                   |                           | 0C/6020A                                    |                              | c Acid / 4 DEG                          |                                    |                            |                           | SOLVED ME              | TALS                                 |     |
|                            | avalent Chromiur                                             | m (Cr+6)                            | 719                       |                                             |                              | EG. C - no heads                        |                                    |                            | =                         |                        | omium (Cr+6)                         |     |
|                            | monia<br>ons (Chloride & Si                                  | ulfate)                             | 300                       | A 350.1<br>.0                               |                              | uric Acid / 4 DE<br>EG. C               | G. C 1 X 250 mL<br>1 X 125 mL      |                            | =                         | monia<br>ons (Chloride | & Sulfate)                           |     |
|                            | cific Gravity                                                | unato,                              |                           | 2710F                                       |                              | EG. C                                   | 1 X 500 mL                         |                            | Spe                       | ecific Gravity         |                                      |     |
| PFA                        | AS                                                           |                                     | Mod                       | lified - EPA 537                            | < 6                          | DEG. C                                  | 2 X 250 mL                         | HDPE                       | X PF                      | AS                     |                                      |     |
| PURGE OB                   | PURGE OBSERVATIONS                                           |                                     |                           |                                             |                              |                                         | KETCH                              |                            |                           |                        |                                      |     |
| PURGE WAT<br>CONTAINER     |                                                              | NO                                  | NUMBER OF GA<br>GENERATED | LLONS 2.25                                  | 5_                           |                                         |                                    |                            |                           |                        |                                      |     |
| NOTES                      |                                                              |                                     |                           |                                             |                              |                                         |                                    |                            |                           |                        |                                      |     |
| * = If 3 turbi             | idity readings a                                             | are < 5 NTU, the                    | en parameter is           | stable                                      |                              |                                         |                                    |                            |                           |                        |                                      |     |
| If Turbidity               | is > 25 NTU the                                              | en collect a filte                  | ered metals san           |                                             |                              |                                         |                                    |                            |                           | MOOG                   |                                      |     |
|                            |                                                              |                                     |                           |                                             |                              |                                         |                                    |                            |                           | \                      | MOOC                                 | 7   |
| Sampled by:                | IAN DESS                                                     | ARLAS                               |                           |                                             | Che                          | cked by:                                |                                    |                            |                           | ,                      |                                      |     |
| Sampler Sign               |                                                              | J'A                                 |                           |                                             |                              |                                         | CITA                               |                            |                           |                        | (A)                                  |     |
|                            |                                                              |                                     |                           |                                             |                              |                                         |                                    |                            |                           |                        |                                      |     |

| WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS, INC.                                                                                  |                                                                                  |                                              |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|
| FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING                                                                                  |                                                                                  |                                              |  |  |  |  |  |
| PROJECT OLIN CHEMICAL SUPERFUND SITE, WILMINGTON, MA                                                                               | WELL ID FW-335                                                                   | COMPREHENSIVE ROUND                          |  |  |  |  |  |
| SAMPLE ID OC-GW-375- XXX                                                                                                           | SITE TYPE Superfund                                                              | DATE 5/88/19                                 |  |  |  |  |  |
| TIME START 1513 END 1600 JOB NU                                                                                                    | MBER 6107190016                                                                  | BOTTLE TIME 1555                             |  |  |  |  |  |
| WATER LEVEL / PUMP SETTINGS  QC SAMPLE COLLECTED ID  WEASUREMENT POINT X TOP OF WELL RISER TOP OF PROTECTIVE CASING OTHER          | PROTECTIVE CASING STICKUP (FROM GROUND)                                          | PROTECTIVE CASING / WELL DIFFERENCE TO 32-T. |  |  |  |  |  |
| INITIAL DEPTH TO WATER 8.46 FT. WELL DEPTH                                                                                         | PID                                                                              | WELL 313                                     |  |  |  |  |  |
| FINAL DEPTH TO WATER 8.59 FT. SCREEN 1.5 FT.                                                                                       | AMBIENT AIR N/A PPM PID WELL                                                     | DIAMETER IN.  WELL YES NO N/A INTEGRITY: CAP |  |  |  |  |  |
| DRAWDOWN VOLUME (final - initial x 0.16 (2-inch) or x 0.65 (4-inch))  LENGTH FT.  RATIO OF DRAWDOWN VOLUME 7TO TOTAL VOLUME PURGED | MOUTH                                                                            | CASING LOCKED COLLAR                         |  |  |  |  |  |
| TOTAL VOL. PURGED GAL.                                                                                                             | REFILL TIMER N/A SEC.                                                            | DISCHARGE TIMER N/A SEC.                     |  |  |  |  |  |
| (purge rate (milliliters our minute) x time duration (minutes) x 0.00026 gal/ml)                                                   | SETTING                                                                          | SETTING                                      |  |  |  |  |  |
| PURGE DATA  DEPTH TO PURGE RATE TEMP. SPEC. COND.                                                                                  | D100 00                                                                          | ——————————————————————————————————————       |  |  |  |  |  |
| TIME WATER (ft.) (ml/min) (deg. C) (μS/cm) (+/- 0.1 (μS/cm) (3%)                                                                   |                                                                                  | SAMPLE DEPTH (ft.) COMMENTS                  |  |  |  |  |  |
| 1524 8 61 178 1071 48 5.8                                                                                                          | 7.80 25.1 100                                                                    | 13'                                          |  |  |  |  |  |
| 1529 9.59 150 10.65 40 52                                                                                                          | 1 466 161 24.7                                                                   | 13                                           |  |  |  |  |  |
| 1534 3.59 50 10.61 36 5.0                                                                                                          | 3 4.53 2.98 202                                                                  | 13                                           |  |  |  |  |  |
| 1539 859 150 10-65 35- 49                                                                                                          | 8 420 1.59 16.9                                                                  | 13                                           |  |  |  |  |  |
| 1)11 0.31 1)                                                                                                                       | 7 4.20 1.28 16.2<br>13 4.13 1.30 14.2                                            | 13                                           |  |  |  |  |  |
| 137   3-34   13 0 10 10 10 3 3 9.                                                                                                  | 3 (11) (30 14.1                                                                  |                                              |  |  |  |  |  |
|                                                                                                                                    |                                                                                  |                                              |  |  |  |  |  |
|                                                                                                                                    |                                                                                  |                                              |  |  |  |  |  |
|                                                                                                                                    |                                                                                  |                                              |  |  |  |  |  |
|                                                                                                                                    |                                                                                  |                                              |  |  |  |  |  |
| EQUIPMENT DOCUMENTATION  TYPE OF PUMP  TYPE OF TUBING                                                                              | TYPE OF PUMP MATERIAL                                                            |                                              |  |  |  |  |  |
| QED BLADDER TEFLON OR TEFLON LINED                                                                                                 | POLYVINYL CHLORIDE                                                               |                                              |  |  |  |  |  |
| SIMCO BLADDER  X PERISTALTIC  X PERISTALTIC  X HIGH DENSITY POLYETHYLENE  LDPE (Dedicated)                                         | X SILICON (Dedicated)                                                            |                                              |  |  |  |  |  |
| ANALYTICAL PARAMETERS                                                                                                              | X SILICON (Dedicated)                                                            |                                              |  |  |  |  |  |
| To Be Collected METHOD NUMBER                                                                                                      | PRESERVATION VOLUME METHOD REQUIRED C                                            | SAMPLE<br>OLLECTED                           |  |  |  |  |  |
| VOCs 8260C                                                                                                                         | HCL / 4 DEG. C 3 X 40 mL VOC vial                                                | VOCs                                         |  |  |  |  |  |
| Hydrazine, MMH, UDMH Mod 8315 LC/MS/MS                                                                                             | Acetate Buffer 2 X 40 mL VOC vial                                                | Hydrazine, MMH, UDMH                         |  |  |  |  |  |
| NDMA Modified - EPA 521 Formaldehyde SW-846 8315A                                                                                  | 4 DEG. C - no sunlight 2 X 1L Amber Glass 4 DEG. C 2 X 250mL Amber Glass         | NDMA Formaldehyde                            |  |  |  |  |  |
| Metals (Al, Cr, Fe, Mn, Mg, Na, As) 6010C/6020A                                                                                    | Nitric Acid / 4 DEG. C 1 X 250 mL Poly                                           | METALS                                       |  |  |  |  |  |
| Dissolved Metals (Al, Cr, Fe, Mn, Mg, Na, As) 6010C/6020A                                                                          | Nitric Acid / 4 DEG. C 1 X 250 mL Poly                                           | DISSOLVED METALS                             |  |  |  |  |  |
| Hexavalent Chromium (Cr+6) 7199 Ammonia EPA 350.1                                                                                  | 4 DEG. C - no headspace 1 X 250 mL Poly Sulfuric Acid / 4 DEG. C 1 X 250 mL Poly | Hexavalent Chromium (Cr+6)  Ammonia          |  |  |  |  |  |
| Anions (Chloride & Sulfate) 300.0                                                                                                  | 4 DEG. C 1 X 125 mL Poly                                                         | Anions (Chloride & Sulfate)                  |  |  |  |  |  |
| Specific Gravity SM2710F  PFAS Modified - EPA 537                                                                                  | 4 DEG. C 1 X 500 mL Poly<br>< 6 DEG. C 2 X 250 mL HDPE                           | Specific Gravity PFAS                        |  |  |  |  |  |
|                                                                                                                                    |                                                                                  |                                              |  |  |  |  |  |
| PURGE OBSERVATIONS  PURGE WATER  NUMBER OF GALLONS                                                                                 | studies Stee Wil                                                                 | P                                            |  |  |  |  |  |
| CONTAINERIZED YES NO GENERATED NOTES                                                                                               | Stainess they were                                                               | , ,                                          |  |  |  |  |  |
| * = If 3 turbidity readings are < 5 NTU, then parameter is stable                                                                  |                                                                                  |                                              |  |  |  |  |  |
| If Turbidity is > 25 NTU then collect a filtered metals sample                                                                     |                                                                                  | _                                            |  |  |  |  |  |
| MALH LOW                                                                                                                           |                                                                                  | wood.                                        |  |  |  |  |  |
| Sampled by: Sampler Signature:                                                                                                     |                                                                                  | WUUU.                                        |  |  |  |  |  |
| Sampled by:<br>Sampler Signature:                                                                                                  | Checked by:                                                                      |                                              |  |  |  |  |  |

| WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                         |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|
| FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                         |  |  |  |  |  |  |
| PROJECT OLIN CHEMICAL SUPERFUND SITE, WILMINGTON, MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WELL ID GW-32D                                                                   | COMPREHENSIVE ROUND                     |  |  |  |  |  |  |
| SAMPLE ID 0 C- G-W-320-774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SITE TYPE Superfund                                                              | DATE SIBSIA                             |  |  |  |  |  |  |
| TIME START 1915 END STITE JOB NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JMBER 6107190016                                                                 | BOTTLE TIME SUST                        |  |  |  |  |  |  |
| WATER LEVEL / PUMP SETTINGS  QC SAMPLE COLLECTED ID  WEASUREMENT POINT  X TOP OF WELL RISER TOP OF PROTECTIVE CASING OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PROTECTIVE CASING STICKUP (FROM GROUND)  FT.                                     | PROTECTIVE CASING/WELL DIFFERENCE       |  |  |  |  |  |  |
| INITIAL DEPTH TO WATER 8.62 FT. WELL DEPTH 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PID                                                                              | WELL DIAMETER IN.                       |  |  |  |  |  |  |
| FINAL DEPTH TO WATER FT. SCREEN SCREEN LENGTH LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AMBIENT AIR                                                                      | WELL YES NO N/A                         |  |  |  |  |  |  |
| DRAWDOWN VOLUME (final - initial x 0.16 (2-inch) or x 0.65 (4-inch))  LENGTH FT.  RATIO OF DRAWDOWN VOLUME TO TOTAL VOLUME PURGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRESSURE TO PUMP N/A PSI                                                         | INTEGRITY: CAP  CASING LOCKED COLLAR    |  |  |  |  |  |  |
| TOTAL VOL. PURGED GAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REFILL TIMER N/A SEC.                                                            | DISCHARGE TIMER N/A SEC.                |  |  |  |  |  |  |
| (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SETTING                                                                          | SETTING                                 |  |  |  |  |  |  |
| PURGE DATA  DEPTH TO PURGE RATE TEMP. SPEC. COND. 2116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pite) DISS. 02 THEREIDITY/AITH ORR/Sh (m)/A                                      | 244815                                  |  |  |  |  |  |  |
| TIME WATER (ft.) (ml/min) (deg. C) (μS/cm) (+/- 0.1 (μS/cm) (π/cm) (π/c | (mg/l)   (mg/l)   TUNDIDITY (NTU)   UNF/EII (IIIV)                               | SAMPLE DEPTH (ft.) COMMENTS             |  |  |  |  |  |  |
| 1924 862 150 1121 B1266 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 212 396 89                                                                     | <b>28</b> '                             |  |  |  |  |  |  |
| 1453 8 62 130 1121 1136 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  | 35                                      |  |  |  |  |  |  |
| 1438 8.62 100 16.22 9264 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 111 3.74 -25.7                                                                 | 3}                                      |  |  |  |  |  |  |
| निन्द ६७३ १६० १७३३ वाव ६३ ६४                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 1.00 334 -341                                                                  | 3,6                                     |  |  |  |  |  |  |
| 1948 862 180 11.23 01261 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  | 51                                      |  |  |  |  |  |  |
| 1763 8.68 120 1133 1136 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  | 28                                      |  |  |  |  |  |  |
| 1203 8.67 160 1111 320 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  | 38                                      |  |  |  |  |  |  |
| 1703 3.62 17 141 3.30 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.45 1.69 15.1                                                                   | a o                                     |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                         |  |  |  |  |  |  |
| EQUIPMENT DOCUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |                                         |  |  |  |  |  |  |
| TYPE OF PUMP TYPE OF TUBING  QED BLADDER TEFLON OR TEFLON LINED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TYPE OF PUMP MATERIAL  POLYVINYL CHLORIDE                                        |                                         |  |  |  |  |  |  |
| SIMCO BLADDER  X HIGH DENSITY POLYETHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STAINLESS STEEL                                                                  |                                         |  |  |  |  |  |  |
| X PERISTALTIC LDPE (Dedicated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X SILICON (Dedicated)                                                            |                                         |  |  |  |  |  |  |
| ANALYTICAL PARAMETERS To Be Collected METHOD NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PRESERVATION VOLUME METHOD REQUIRED                                              | SAMPLE<br>COLLECTED                     |  |  |  |  |  |  |
| VOCs 8260C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HCL / 4 DEG. C 3 X 40 mL VOC vial                                                | VOCs                                    |  |  |  |  |  |  |
| Hydrazine, MMH, UDMH Mod 8315 LC/MS/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acetate Buffer 2 X 40 mL VOC vial                                                | Hydrazine, MMH, UDMH                    |  |  |  |  |  |  |
| NDMA Modified - EPA 521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 DEG. C - no sunlight 2 X 1L Amber Glass                                        | NDMA                                    |  |  |  |  |  |  |
| Formaldehyde SW-846 8315A  Metals (Ai, Cr, Fe, Mn, Mg, Na, As) 6010C/6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 DEG. C 2 X 250mL Amber Glass  Nitric Acid / 4 DEG. C 1 X 250 mL Poly           | Formaldehyde  METALS                    |  |  |  |  |  |  |
| Dissolved Metals (Al, Cr, Fe, Mn, Mg, Na, As) 6010C/6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nitric Acid / 4 DEG. C 1 X 250 mL Poly                                           | DISSOLVED METALS                        |  |  |  |  |  |  |
| Hexavalent Chromium (Cr+6) 7199 Ammonia EPA 350.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 DEG. C - no headspace 1 X 250 mL Poly Sulfuric Acid / 4 DEG. C 1 X 250 mL Poly | Hexavalent Chromium (Cr+6)  Ammonia     |  |  |  |  |  |  |
| Ammonia EPA 350.1 Anions (Chloride & Sulfate) 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 DEG. C 1 X 250 ML Poly                                                         | Anions (Chloride & Sulfate)             |  |  |  |  |  |  |
| Specific Gravity SM2710F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 DEG. C 1 X 500 mL Poly                                                         | Specific Gravity                        |  |  |  |  |  |  |
| PFAS Modified - EPA 537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 6 DEG. C 2 X 250 mL HDPE                                                       | PFAS                                    |  |  |  |  |  |  |
| PURGE OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCATION SKETCH                                                                  | man                                     |  |  |  |  |  |  |
| PURGE WATER CONTAINERIZED YES NO GENERATED 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - SAUNLIS Steel well                                                             | y y                                     |  |  |  |  |  |  |
| NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                |                                         |  |  |  |  |  |  |
| * = If 3 turbidity readings are < 5 NTU, then parameter is stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                         |  |  |  |  |  |  |
| If Turbidity is > 25 NTU then collect a filtered metals sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                         |  |  |  |  |  |  |
| 1 July 1 Leves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | wood.                                   |  |  |  |  |  |  |
| Sampled by: Sampler Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Checked by: CTM                                                                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |  |  |  |  |  |  |

V

| WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| FIELD DATA RECORD - LOW FLOW GROUNDWATER SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING                                                                                                                |  |  |  |  |  |  |  |
| PROJECT OLIN CHEMICAL SUPERFUND SITE, WILMINGTON, MA WELL ID GV-540 COMPREHENSIVE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                  |  |  |  |  |  |  |  |
| SAMPLE ID OC- (5W -540 - 777) SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TYPE Superfund DATE \$12819                                                                                                                                      |  |  |  |  |  |  |  |
| TIME START 130 END 1900 JOB NUMBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1336                                                                                                                                                             |  |  |  |  |  |  |  |
| WATER LEVEL / PUMP SETTINGS  MEASUREMENT POINT  QC SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PROTECTIVE PROTECTIVE                                                                                                                                            |  |  |  |  |  |  |  |
| COLLECTED ID (11) (13) (15) TOP OF PROTECTIVE CASING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CASING STICKUP (FROM GROUND)  ATT. DIFFERENCE  CASING WELL  CASING FT.                                                                                           |  |  |  |  |  |  |  |
| INITIAL DEPTH TO WATER TO WATE | PID WELL                                                                                                                                                         |  |  |  |  |  |  |  |
| FINAL DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AMBIENT AIR N/A PPM DIAMETER N.                                                                                                                                  |  |  |  |  |  |  |  |
| IOWATER FT. SCREEN LENGTH FT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PID WELL MOUTH  N/A  PPM  WELL YES NO N/A  N/A  PPM  INTEGRITY: CAP                                                                                              |  |  |  |  |  |  |  |
| DRAWDOWN VOLUME GAL. (final - initial x 0.16 {2-inch} or x 0.65 {4-inch})  RATIO OF DRAWDOWN VOLUME TO TOTAL VOLUME PURGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PRESSURE TO PUMP N/A PSI COLLAR                                                                                                                                  |  |  |  |  |  |  |  |
| TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REFILL                                                                                                                                                           |  |  |  |  |  |  |  |
| PURGE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SET INC                                                                                                                                                          |  |  |  |  |  |  |  |
| DEPTH TO PURGE RATE TEMP. SPEC. COND. pH (units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DISS. 02 TURBIDITY(NTU) ORP/Eh (mV) SAMPLE                                                                                                                       |  |  |  |  |  |  |  |
| (0.3 ft.) (100-400) (3%) (3%) (+/- 0.1 unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) (10% > 0.5) (10% if >5 NTU)* (+/- 10 mV) DEPTH (ft.) COMMENTS                                                                                                  |  |  |  |  |  |  |  |
| 1252 4.67 700 11.84 0366 6.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 243 7.31 -314 18                                                                                                                                                 |  |  |  |  |  |  |  |
| 1257 4 67 200 liso ous 6.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.99 5.60 3.0 18                                                                                                                                                 |  |  |  |  |  |  |  |
| 1302 9.67 200 [0.97 0.090 5,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jusy 5.52 15.2 Le                                                                                                                                                |  |  |  |  |  |  |  |
| 1307 467 200 10,680 5,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uss 462- 267 18                                                                                                                                                  |  |  |  |  |  |  |  |
| 1312 467 200 10.68 0.080 5.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 189 321 410 18                                                                                                                                                   |  |  |  |  |  |  |  |
| 1322 4.67 200 1036 02078 586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 176 273 46 68                                                                                                                                                    |  |  |  |  |  |  |  |
| 1327 7.67 200 tosy 0.027 5.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1182 289 48.1 18                                                                                                                                                 |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  |  |  |  |  |  |  |  |
| EQUIPMENT DOCUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                  |  |  |  |  |  |  |  |
| TYPE OF PUMP TYPE OF TUBING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TYPE OF PUMP MATERIAL                                                                                                                                            |  |  |  |  |  |  |  |
| QED BLADDER     TEFLON OR TEFLON LINED     SIMCO BLADDER     X HIGH DENSITY POLYETHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | POLYVINYL CHLORIDE STAINLESS STEEL                                                                                                                               |  |  |  |  |  |  |  |
| X PER ISTALTIC LDPE (Dedicated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X SILICON (Dedicated)                                                                                                                                            |  |  |  |  |  |  |  |
| ANALYTICAL PARAMETERS To Be Collected METHOD PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RESERVATION VOLUME SAMPLE                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ETHOD REQUIRED COLLECTED                                                                                                                                         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CL / 4 DEG. C 3 X 40 mL VOC vial VOCs                                                                                                                            |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cetate Buffer 2 X 40 mL VOC vial Hydrazine, MMH, UDMH  DEG. C - no sunlight 2 X 1L Amber Glass NDMA                                                              |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEG. C 2 X 250mL Amber Glass Formaldehyde                                                                                                                        |  |  |  |  |  |  |  |
| which was the control of the control | tric Acid / 4 DEG. C 1 X 250 mL Poly METALS                                                                                                                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tric Acid / 4 DEG. C         1 X 250 mL Poly         DISSOLVED METALS           DEG. C - no headspace         1 X 250 mL Poly         Hexavalent Chromium (Cr+6) |  |  |  |  |  |  |  |
| Ammonia EPA 350.1 Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | alfuric Acid / 4 DEG. C 1 X 250 mL Poly Ammonia                                                                                                                  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEG. C 1 X 125 mL Poly Anions (Chloride & Sulfate)  DEG. C 1 X 500 mL Poly Specific Gravity                                                                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 DEG. C 2 X 250 mL HDPE PFAS                                                                                                                                    |  |  |  |  |  |  |  |
| PURGE OB SERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCATION SKETCH COR S. Je MAD                                                                                                                                    |  |  |  |  |  |  |  |
| PURGE WATER CONTAINERIZED YES NO GENERATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6C-GW-540-Dup- Duplicate<br>6C-GW-540-MS - MATRY SPK<br>5C-GW-540-MSO - MARRY DUP.                                                                               |  |  |  |  |  |  |  |
| NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66-Cil - Galance - Maria Car                                                                                                                                     |  |  |  |  |  |  |  |
| * = If 3 turb lidity readings are < 5 NTU, then parameter is stable  If Turbidity is > 25 NTU then collect a filtered metals sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | octor sylvering - make you                                                                                                                                       |  |  |  |  |  |  |  |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3C-GM - 340-MM                                                                                                                                                   |  |  |  |  |  |  |  |
| mochelle Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>WOOO.</b>                                                                                                                                                     |  |  |  |  |  |  |  |
| Sampled by: Sampler Signature: WWW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | necked by:                                                                                                                                                       |  |  |  |  |  |  |  |

| WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS, INC. FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING |                                                           |                             |                                |                              |                                         |                                    |                            |                                    |                                       |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------------------|------------------------------------|----------------------------|------------------------------------|---------------------------------------|
| PROJECT OLIN CHEMICAL S                                                                             | SUPERFUND SITE, V                                         | WILMINGTON                  | I, MA                          | WE                           | LL ID GW                                | -107                               |                            | ]                                  | DMPREHENSIVE ROUND                    |
|                                                                                                     | SAMPLE ID OC-GW-101-XXX                                   |                             |                                |                              |                                         | TE TYPE Superfund                  |                            |                                    | DATE 5/28/2019                        |
| TIME START 1695                                                                                     |                                                           | 325                         |                                | JOB NUMBE                    |                                         | 6107190016                         |                            | ]<br>В                             | SOTTLE TIME 1813                      |
| WATER LEVEL / PUMP SETT                                                                             | rings                                                     | MEASURE                     | MENT POINT                     |                              |                                         |                                    |                            |                                    | · · · · · · · · · · · · · · · · · · · |
| QC SAMPLE<br>COLLECTED ID                                                                           |                                                           |                             | OF WELL RISER OF PROTECTIVE ER | CASING                       | PROTECTIVE<br>CASING STIC<br>(FROM GROL | KUP 1                              | 9 FT.                      | PROTECTI<br>CASING / V<br>DIFFEREN | WELL A O                              |
| INITIAL DEPTH TO WATER 11.3                                                                         | 6 FT.                                                     | WELL DEF                    | PTH 18.7                       | FT.                          | PID<br>AMBIENT AIR                      | N/A                                | PPM                        | WELL<br>DIAMETER                   | 3,0 IN.                               |
| FINAL DEPTH<br>TO WATER                                                                             | Y FT.                                                     | SCREEN<br>LENGTH            | 11.5                           | FT.                          | PID WELL<br>MOUTH                       | N/A                                | PPM                        | WELL<br>INTEGRITY                  | YES NO N/A                            |
| DRAWDOWN VOLUME (final - initial x 0.16 {2-inch} o                                                  | UAL.                                                      |                             | DF DRAWDOWN NOTAL VOLUME PU    |                              | PRESSURE<br>TO PUMP                     | N/A                                | PSI                        |                                    | CASING X                              |
| TOTAL VOL.                                                                                          | GAL.                                                      | 0                           | .003                           |                              | REFILL<br>TIMER                         | N/A                                | SEC.                       | DISCHARG                           |                                       |
| (purge rate (milliliters per min                                                                    | nute) x time duration (                                   | (minutes) x 0.              | 00026 gal/ml)                  |                              | SETTING                                 |                                    |                            | SETTING                            |                                       |
| PURGE DATA  DEPTH TO P                                                                              | URGE RATE   T                                             | EMP.                        | SPEC. COND.                    |                              | DISS. O2                                | T                                  | T                          |                                    |                                       |
| TIME WATER (ft.)<br>(0.3 ft.)                                                                       | (ml/min) (d<br>(100-400)                                  | leg. C)<br>(3%)             | (μS/cm)<br>(3%)                | pH (units)<br>(+/- 0.1 unit) | (mg/L)<br>(10% > 0.5)                   | TURBIDITY(NTU)<br>(10% if >5 NTU)* | ORP/Eh (mV)<br>(+/- 10 mV) | SAMPLE<br>DEPTH (ft.)              | COMMENTS                              |
|                                                                                                     | 150 10.3                                                  | -                           | 3,540                          | 6.19                         | 0,9)                                    | 8.39                               | 53.3                       | "15"                               |                                       |
|                                                                                                     | 50 10.5                                                   |                             | 1.503<br>.476                  | 6.19                         | 0.78                                    | 5.84                               | 50.6                       | 1                                  |                                       |
|                                                                                                     | 250 10.                                                   |                             | -444                           | 6.16                         | 0.75                                    | 6.89                               | 41.7                       |                                    |                                       |
| 4                                                                                                   | 150 10.                                                   | V                           | <u>434</u>                     | 6.15                         | 1.0)                                    | 6.66                               | 38.2                       |                                    |                                       |
|                                                                                                     |                                                           |                             | ,430                           | 6.13                         | 1.44                                    | 4.35                               | 35.)                       |                                    |                                       |
|                                                                                                     | 150 10.0                                                  |                             | .418                           | 6.14                         | 1.54                                    | 5.20                               | 33.3                       |                                    |                                       |
|                                                                                                     | 250 10,0                                                  |                             | .469                           | 6.14                         | 1.30                                    | 3.65                               | 28.8                       |                                    |                                       |
|                                                                                                     | 250 10.5                                                  |                             | 358                            | 6.13                         | 1.17                                    | 2.10                               | 24.9                       |                                    |                                       |
|                                                                                                     | 250- 10.0                                                 | ,                           | .388                           | 6.12                         | 1.06                                    | 1.69                               | 23.0                       |                                    |                                       |
|                                                                                                     | 150 10.7<br>150 11.                                       |                             | 3.384                          | 6.12                         | 1.09                                    | 1.62                               | 32.8                       | 1                                  |                                       |
| EQUIPMENT DOCUMENTATI                                                                               |                                                           | 00 (                        | 2,201                          | 6,10                         | 1.00                                    | 1018                               | 0,1                        | *                                  |                                       |
| TYPE OF PUMP                                                                                        |                                                           | OF TUBING                   |                                |                              | TYPE OF                                 | PUMP MATERIAL                      |                            |                                    |                                       |
| QED BLADDER                                                                                         |                                                           |                             | EFLON LINED                    |                              |                                         | LYVINYL CHLORIDE                   |                            |                                    |                                       |
| SIMCO BLADDER  X PERISTALTIC                                                                        |                                                           | IIGH DENSIT<br>DPE (Dedicat | Y POLYETHYLEN                  | E                            |                                         | AINLESS STEEL ICON (Dedicated)     | . ~ 1 1 0 7                | /28/2019                           | 120 1000                              |
| ANALYTICAL PARAMETERS                                                                               |                                                           | DI L (Dedical               | leu)                           |                              |                                         | ICON (Dedicated)                   | NEW 05                     | 12012019                           | per app                               |
| To Be Collected                                                                                     |                                                           | METH(                       |                                |                              | ESERVATION<br>THOD                      | VOLUME<br>REQUIRED                 |                            | SAMPLE<br>COLLECTED                |                                       |
| vocs                                                                                                |                                                           | 8260C                       |                                | НС                           | L/4 DEG. C                              | 3 X 40 mL V                        | OC vial                    | VOCs                               |                                       |
| Hydrazine, MMH, UDMH                                                                                |                                                           |                             | 315 LC/MS/MS                   |                              | etate Buffer                            | 2 X 40 mL V                        |                            | ==                                 | ine, MMH, UDMH                        |
| NDMA<br>Formaldehyde                                                                                |                                                           |                             | ed - EPA 521<br>16 8315A       |                              | EG. C - no sunl<br>EG. C                |                                    | er Glass<br>Amber Glass    | NDMA                               | dehyde                                |
| Metals (Al, Cr, Fe, Mn, M                                                                           | lg, Na, As)                                               |                             | /6020A                         |                              | ic Acid / 4 DEG                         |                                    |                            | METAL                              |                                       |
| Dissolved Metals (Al, Cr,                                                                           | Dissolved Metals (Al, Cr, Fe, Mn, Mg, Na, As) 6010C/6020A |                             |                                |                              | ic Acid / 4 DEG                         | . C 1 X 250 mL                     | Poly                       | DISSO                              | LVED METALS                           |
| Hexavalent Chromium (C                                                                              | Cr+6)                                                     | 7199                        | FO.4                           |                              | EG. C - no heads                        |                                    |                            | ==                                 | alent Chromium (Cr+6)                 |
| Ammonia Anions (Chloride & Sulfa                                                                    | te)                                                       | EPA 3:                      | 50.1                           |                              | furic Acid / 4 DE<br>EG. C              | G. C 1 X 250 mL<br>1 X 125 mL      | 5                          | Ammor                              | (Chloride & Sulfate)                  |
| Specific Gravity                                                                                    | ,                                                         | SM271                       | OF                             |                              | EG. C                                   | 1 X 500 mL                         | none of the                | Specific                           |                                       |
| PFAS                                                                                                |                                                           | Modifie                     | ed - EPA 537                   | < 6                          | DEG. C                                  | 2 X 250 mL                         | HDPE                       | PFAS                               |                                       |
| PURGE OBSERVATIONS                                                                                  |                                                           |                             |                                |                              | LOCATION S                              | KETCH                              |                            |                                    |                                       |
| PURGE WATER<br>CONTAINERIZED YES                                                                    |                                                           | ER OF GALL<br>RATED         | ONS 4.0                        |                              |                                         |                                    |                            |                                    |                                       |
| NOTES                                                                                               |                                                           |                             |                                |                              |                                         |                                    |                            |                                    |                                       |
| * = If 3 turbidity readings are                                                                     | 30%                                                       |                             |                                |                              |                                         |                                    |                            |                                    |                                       |
| If Turbidity is > 25 NTU then of                                                                    | collect a filtered m                                      | etals sampl                 | e                              |                              |                                         |                                    |                            |                                    |                                       |
|                                                                                                     |                                                           |                             |                                |                              |                                         |                                    |                            |                                    | wood.                                 |
| lan/harai                                                                                           | AVC4 N                                                    |                             |                                | 200                          |                                         |                                    |                            |                                    | ********                              |
| Sampled by: INDES JUST Sampler Signature:                                                           | 2                                                         |                             |                                | Che                          | ecked by:                               | Im                                 |                            |                                    | ,                                     |

|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ORD - LO                            |                           | UTIONS, INC.<br>ROUNDWAT                     | ER SAM                                                                        | IPLING                                           |                                    |                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------|----------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------|--------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AL SUPERFUND                        | WWW 0 503,000 000 00      | MAT 15 100 15 100 100 100 100 100 100 100 1  |                                                                               | and an annual source                             | N-305                              |                                                  | ]                         | COMPREHENSIVE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SAMPLE ID                                                                                                  | MISID OC-CIT 205 XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                           |                                              |                                                                               | TYPE                                             | Superfund                          |                                                  | ]                         | DATE 5/29/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TIME                                                                                                       | START 075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | D 1055                    |                                              | JOB NUMBE                                                                     |                                                  | 6107190016                         |                                                  | ]                         | BOTTLE TIME 10:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                            | VEL / PUMP S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                           | JREMENT POINT                                | JOB NOWBE                                                                     |                                                  | 0107130010                         |                                                  |                           | BOTTLE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| QC SAN                                                                                                     | THE RESIDENCE MANAGEMENT AND THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /                                   | X TO                      | OP OF WELL RISER<br>OP OF PROTECTIVE<br>THER | CASING                                                                        | PROTECTIVE<br>CASING STIC<br>(FROM GROU          | KUP                                | FT.                                              | PROTE<br>CASING<br>DIFFER | G/WELL TO DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| INITIAL DE                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94 1                                | T. WELL (TOR)             | DEPTH 18.6                                   | FT.                                                                           | PID<br>AMBIENT AIR                               | N/A                                | PPM                                              | WELL<br>DIAMET            | TER 2 IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FINAL DEI<br>TO WA                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98 ,                                | T. SCREE                  | N N                                          | FT.                                                                           | PID WELL<br>MOUTH                                | N/A                                | PPM                                              | WELL                      | YES NO N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DRAWDO<br>VOLU<br>(final - ir                                                                              | IME U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04 G.<br>h) or x 0.65 {4-inc        | AL. RATI                  | O OF DRAWDOWN TOTAL VOLUME PU                | VOLUME                                                                        | PRESSURE<br>TO PUMP                              | N/A                                | PSI                                              | ]                         | CASINGX LOCKEDX COLLAR _X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TOTAL V                                                                                                    | /OL. <i>Q</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                   | AL.                       | 0.004                                        |                                                                               | REFILL<br>TIMER                                  | N/A                                | SEC.                                             | DISCHA                    | Market Commence of the Commenc |
| 100 0000000                                                                                                | The second secon | minute) x time du                   |                           | x 0.00026 gal/ml)                            |                                                                               | SETTING                                          | IWA                                | SEC.                                             | SETTIN                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PURGE DA                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Loubos bars                         | 75115                     |                                              |                                                                               |                                                  |                                    | Т                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TIME                                                                                                       | DEPTH TO<br>WATER (ft.)<br>(0.3 ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PURGE RATE<br>(ml/min)<br>(100-400) | TEMP.<br>(deg. C)<br>(3%) | SPEC. COND.<br>(μS/cm)<br>(3%)               | pH (units)<br>(+/- 0.1 unit)                                                  | DISS. O2<br>(mg/L)<br>(10% > 0.5)                | TURBIDITY(NTU)<br>(10% if >5 NTU)* | ORP/Eh (mV)<br>(+/- 10 mV)                       | SAMPLE<br>DEPTH (ft.)     | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0810                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | /                         | /                                            | /                                                                             |                                                  | /                                  | /                                                | /                         | BEGIN PURGE-HEAVY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                           |                                              |                                                                               | -                                                |                                    |                                                  |                           | OXIDIZED GRANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                           |                                              |                                                                               | -/-                                              |                                    | <del>-/-</del>                                   |                           | PURCH ~ 2.5 GALLAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0835                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                   |                           |                                              | <del>                                     </del>                              | <del>                                     </del> |                                    | <del>                                     </del> |                           | PURCE CLEARS-CONNECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0840                                                                                                       | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /                                   | /                         | /                                            | /                                                                             | /                                                |                                    | /                                                | /                         | CELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0845                                                                                                       | 5.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                 | 11.38                     | 0.184                                        | 6.25                                                                          | 0.65                                             | 368                                | 9.6                                              | 16                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0850                                                                                                       | 5.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                 | 11.43                     | 0.181                                        | 6.31                                                                          | 0.65                                             | 722                                | -9.5                                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0822                                                                                                       | 5.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                 | 11.43                     | 0.179                                        | 6.30                                                                          | 0.76                                             | >1000                              | -10.5                                            |                           | NTV OUT OF RANGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0960                                                                                                       | 5.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                 | 11.47                     | 0.176                                        | 6.28                                                                          | 1.24                                             | 578                                | -20.1                                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0905                                                                                                       | 5.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                 | 11.38                     | 0.168                                        | 6.31                                                                          | 2.02                                             | 346                                | -23.9                                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                            | T DOCUMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | 11.47                     | 0.165                                        | 6.31                                                                          | 1.83                                             | all                                | - 30.6                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                            | F PUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     | TYPE OF TUBIN             |                                              |                                                                               | 90                                               | PUMP MATERIAL                      |                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                            | D BLADDER<br>MCO BLADDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                           | R TEFLON LINED<br>SITY POLYETHYLEN           | F                                                                             |                                                  | LYVINYL CHLORIDE<br>AINLESS STEEL  |                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                            | RISTALTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | LDPE (Dec                 |                                              | -                                                                             | X SIL                                            | ICON (Dedicated)                   | JEW - U                                          | 5/29/2                    | uig PERGAPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ANALYTICATO Be Collect                                                                                     | AL PARAMETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RS                                  |                           | THOD<br>MBER                                 |                                                                               | RESERVATION<br>ETHOD                             | VOLUME<br>REQUIRED                 |                                                  | SAMPLE<br>COLLECTED       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thvo                                                                                                       | Oo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | 826                       |                                              |                                                                               | CL/4 DEG. C                                      |                                    |                                                  | Thvo                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                            | os<br>Irazine, MMH, UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | мн                                  |                           | d 8315 LC/MS/MS                              |                                                                               | etate Buffer                                     | 3 X 40 mL V<br>2 X 40 mL V         |                                                  | =                         | Irazine, MMH, UDMH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NDN                                                                                                        | MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | Мо                        | dified - EPA 521                             | 4 [                                                                           | DEG. C - no sun                                  | light 2 X 1L Amb                   | er Glass                                         | □ NDI                     | MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                            | maldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a Ma Na As)                         |                           | -846 8315A                                   |                                                                               | DEG. C                                           |                                    | Amber Glass                                      | For                       | maldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Metals (AI, Cr, Fe, Mn, Mg, Na, As) 6010C/6020A  Dissolved Metals (AI, Cr, Fe, Mn, Mg, Na, As) 6010C/6020A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                           |                                              | Nitric Acid / 4 DEG. C 1 X 250 mL Poly Nitric Acid / 4 DEG. C 1 X 250 mL Poly |                                                  |                                    | =                                                | SOLVED METALS             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                            | avalent Chromiu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m (Cr+6)                            | 719                       |                                              |                                                                               | EG. C - no heads                                 |                                    | Poly                                             | =                         | ravalent Chromium (Cr+6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Anic                                                                                                       | monia<br>ons (Chloride & S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ulfate)                             | EP.                       | A 350.1                                      |                                                                               | Ilfuric Acid / 4 DE<br>DEG. C                    | EG. C 1 X 250 mL<br>1 X 125 mL     |                                                  | =                         | monia<br>ons (Chloride & Sulfate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                            | cific Gravity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | unate)                              |                           | 2710F                                        |                                                                               | DEG. C                                           | 1 X 500 mL                         | (5)                                              | _                         | cific Gravity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ¥ PF/                                                                                                      | AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | Мо                        | dified - EPA 537                             | < 6                                                                           | DEG. C                                           | 2 X 250 mL                         | HDPE                                             | PF.                       | AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ALL CONTRACTOR OF CHARACTER CONTRACTOR                                                                     | SERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                           | . 500 - 54054 5405                           | T                                                                             | LOCATION                                         | SKETCH                             |                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PURGE WA'                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ] NO                                | NUMBER OF G               | 8.5                                          |                                                                               |                                                  |                                    |                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NOTES                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                           |                                              |                                                                               |                                                  |                                    |                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | are < 5 NTU, the                    |                           |                                              |                                                                               |                                                  |                                    |                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If Turbidity                                                                                               | is > 25 NTU th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | en collect a filte                  | ered metals sar           | nple                                         |                                                                               |                                                  |                                    |                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                           |                                              |                                                                               |                                                  |                                    | 4                                                |                           | Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                            | IAN DESI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ARLAIS                              |                           |                                              | Ch                                                                            | ecked by:                                        | CTM                                | ****                                             |                           | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sampler Sigr                                                                                               | nature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 762                                 |                           |                                              |                                                                               |                                                  | 1 300000                           |                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| The same states are           |                                                   |                                     |                           | OLUTIONS, INC.  GROUNDWA                        | TER SAMI                     | PLING                                   |                                    |                            |                            |                                              |
|-------------------------------|---------------------------------------------------|-------------------------------------|---------------------------|-------------------------------------------------|------------------------------|-----------------------------------------|------------------------------------|----------------------------|----------------------------|----------------------------------------------|
| PROJECT                       | JECT OLIN CHEMICAL SUPERFUND SITE, WILMINGTON, MA |                                     |                           |                                                 |                              | WELL ID GW-305                          |                                    |                            |                            | COMPREHENSIVE ROUND                          |
| SAMPLE ID                     | EID OC-GW-305-XX                                  |                                     |                           | SITE "                                          | E TYPE Superfund             |                                         |                                    |                            | DATE 05/29/249             |                                              |
| TIME                          | START 075                                         | CO ENI                              | 0 1055                    |                                                 | JOB NUMBE                    | R                                       | 6107190016                         | 3                          |                            | BOTTLE TIME 10:14                            |
| WATER LE                      | VEL / PUMP SE                                     | ETTINGS                             | ME                        | ASUREMENT POINT                                 |                              |                                         |                                    |                            |                            |                                              |
| QC SAN<br>COLLEC              | MPLE<br>CTED ID                                   |                                     | X                         | TOP OF WELL RISEF<br>TOP OF PROTECTIVE<br>OTHER |                              | PROTECTIVE<br>CASING STIC<br>(FROM GROU | KUP FILE                           | H FT.                      | PROTE(<br>CASING<br>DIFFER | A 76                                         |
| INITIAL DEI                   |                                                   | .94 F                               | T. WE                     | LL DEPTH 18                                     | O FT.                        | PID<br>AMBIENT AIR                      | N/A                                | PPM                        | WELL                       | TER 2 IN.                                    |
| FINAL DEI                     |                                                   | .98 F                               | T. SCI                    | REEN 10                                         | FT.                          | PID WELL<br>MOUTH                       | N/A                                | РРМ                        | WELL<br>INTEGR             | YES NO N/A                                   |
| DRAWDO<br>VOLU<br>(final - in |                                                   |                                     | AL. R                     | ATIO OF DRAWDOWN                                | N VOLUME                     | PRESSURE<br>TO PUMP                     | N/A                                | PSI                        |                            | CASING 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| TOTAL V                       | /OL. <                                            | 25                                  |                           | 0.004                                           |                              | REFILL                                  |                                    |                            | DISCHA                     | ARGE                                         |
| PUR(<br>(purge r              | u                                                 |                                     | AL. Iration (minute       | es) x 0.00026 gal/ml)                           |                              | TIMER<br>SETTING                        | N/A                                | SEC.                       | SETTIN                     | G N/A SEC.                                   |
| PURGE DA                      | ATA                                               |                                     |                           |                                                 |                              |                                         |                                    |                            |                            |                                              |
| TIME                          | DEPTH TO<br>WATER (ft.)<br>(0.3 ft.)              | PURGE RATE<br>(ml/min)<br>(100-400) | TEMP.<br>(deg. C)<br>(3%) | SPEC. COND.<br>(µS/cm)<br>(3%)                  | pH (units)<br>(+/- 0.1 unit) | DISS. O2<br>(mg/L)<br>(10% > 0.5)       | TURBIDITY(NTU)<br>(10% if >5 NTU)* | ORP/Eh (mV)<br>(+/- 10 mV) | SAMPLE<br>DEPTH (ft.)      | COMMENTS                                     |
| 0915                          | 5.98                                              | 200                                 | 11.46                     | 0.162                                           | 6.31                         | 1.48                                    | 124                                | -23.7                      | 16                         | NEW CARBUY (5 GALGS)                         |
| 0920                          | 5,98                                              | 200                                 | 11.48                     | 0.161                                           | 6.30                         | 1.30                                    | 116                                | -22.2                      | 1                          |                                              |
| 0925                          | 5.98                                              | 200                                 | 11.44                     | 0.159                                           | 6.30                         | 1.15                                    | 95.5                               | -27.3                      |                            |                                              |
| 0930                          | 5.98                                              | 200                                 | 11.47                     | 0.158                                           | 6.29                         | 0.97                                    | 44.4                               | -34.4                      | -                          |                                              |
| 0940                          | 5.98                                              | 200                                 | 11.49                     | 0.158                                           | 6.29                         | 0.95                                    | 43.1                               | -35.2                      |                            |                                              |
| 0945                          | 5.98                                              | 200                                 | 11.49                     | 0.157                                           | 6.30                         | 0.93                                    | 46.4                               | -46.4                      |                            |                                              |
| 0950                          | 5.98                                              | 200                                 | 11.52                     | 0.156                                           | 6.30                         | 0.87                                    | 44.2                               | -47.6                      |                            |                                              |
| 0955                          | 5.98                                              | 200                                 | 11.58                     | 0.156                                           | 6.31                         | 0.84                                    | 40.3                               | -47.6                      |                            |                                              |
| 10:00                         | 5.98                                              | 200                                 | 11.52                     | 0.157                                           | 6.31                         | 0.33                                    | 41.1                               | -27.5                      |                            | -MAURA ORP?                                  |
| 10:05                         | 5.98                                              | 200                                 | 11.53                     | 0.156                                           | 6.31                         | 0.78                                    | 44.2                               | -24.7                      |                            |                                              |
| 10:10                         | 5.98                                              | 200                                 | 11.53                     | 0.157                                           | 6.32                         | 0.75                                    | 45.8                               | -26.2                      | ¥                          | SAMPLE & 10:14                               |
|                               | NT DOCUMENT                                       | ATION                               | TYPE OF TU                | IBING                                           |                              | TYPE OF                                 | PUMP MATERIAL                      |                            |                            |                                              |
|                               | <u>F PUMP</u><br>D BLADDER                        |                                     |                           | N OR TEFLON LINED                               |                              |                                         | LYVINYL CHLORID                    | Ε                          |                            |                                              |
| SIN                           | MCO BLADDER                                       |                                     |                           | ENSITY POLYETHYLE                               | ENE                          | ST                                      | AINLESS STEEL                      | ,                          | /                          | TANA ANDR                                    |
| X PEF                         | RISTALTIC                                         |                                     | LDPE (                    | Dedicated)                                      |                              | X SIL                                   | ICON (Dedicated)                   | NEW 05/                    | 29/2019                    | PER CAPP                                     |
| ANALYTIC<br>To Be Collect     | AL PARAMETE                                       | RS                                  |                           | METHOD<br>NUMBER                                |                              | ESERVATION                              | VOLUME<br>REQUIRE                  | <u>D</u>                   | SAMPLE<br>COLLECTED        | 2                                            |
| Пуо                           | Cs                                                |                                     |                           | 8260C                                           | нс                           | L/4 DEG. C                              | 3 X 40 mL                          | VOC vial                   | Пуо                        | Cs                                           |
|                               | drazine, MMH, UD                                  | МН                                  |                           | Mod 8315 LC/MS/MS                               |                              | etate Buffer                            | 2 X 40 mL                          | VOC vial                   |                            | drazine, MMH, UDMH                           |
| NDI                           |                                                   |                                     |                           | Modified - EPA 521                              |                              | EG. C - no sun                          | -                                  |                            | NDI                        |                                              |
|                               | maldehyde<br>tals (Al, Cr, Fe, Mr                 | n Mn Na As)                         |                           | SW-846 8315A<br>6010C/6020A                     |                              | EG. C<br>ric Acid / 4 DEG               |                                    | Amber Glass                |                            | maldehyde<br>TALS                            |
|                               | solved Metals (Al,                                |                                     | Na, As)                   | 6010C/6020A                                     |                              | ric Acid / 4 DEG                        |                                    |                            |                            | SOLVED METALS                                |
|                               | xavalent Chromius                                 | m (Cr+6)                            |                           | 7199                                            |                              | EG. C - no heads                        |                                    |                            |                            | xavalent Chromium (Cr+6)                     |
|                               | monia<br>ons (Chloride & S                        | ulfata)                             |                           | EPA 350.1<br>300.0                              |                              | furic Acid / 4 DE<br>EG. C              | EG. C 1 X 250 m<br>1 X 125 m       |                            |                            | monia<br>ons (Chloride & Sulfate)            |
|                               | ecific Gravity                                    | uliale)                             |                           | SM2710F                                         |                              | EG. C                                   | 1 X 500 m                          |                            |                            | ecific Gravity                               |
| □ PF                          | AS                                                |                                     |                           | Modified - EPA 537                              | < 6                          | DEG. C                                  | 2 X 250 m                          | LHDPE                      | <b>≯</b> PF                | AS                                           |
| PURGE OF                      | BSERVATIONS                                       |                                     |                           |                                                 |                              | LOCATION                                | SKETCH                             |                            |                            |                                              |
| PURGE WA                      |                                                   | ] NO                                | NUMBER O<br>GENERATE      | F GALLONS 8.5                                   |                              |                                         |                                    |                            |                            |                                              |
| NOTES                         |                                                   |                                     |                           |                                                 |                              |                                         |                                    |                            |                            |                                              |
|                               | oidity readings                                   |                                     |                           |                                                 |                              |                                         |                                    |                            |                            |                                              |
| If Turbidity                  | / is > 25 NTU th                                  | en collect a filt                   | erea metals               | sample                                          |                              |                                         |                                    |                            |                            | wood.                                        |
|                               |                                                   |                                     |                           |                                                 |                              |                                         |                                    |                            |                            | WOOD.                                        |
| Sampled by:                   | I AN DES                                          | LABLAS                              |                           |                                                 | Ch                           | ecked by:                               | ארב                                |                            |                            |                                              |
|                               | gnature:                                          | 162                                 |                           |                                                 |                              |                                         | - 1                                |                            | _                          |                                              |

| WOOD ENVIRONMENT &                         |                                                  |                           |                                     | ER SAM                       | PLING                                   |                                    |                            |                  |                                          |
|--------------------------------------------|--------------------------------------------------|---------------------------|-------------------------------------|------------------------------|-----------------------------------------|------------------------------------|----------------------------|------------------|------------------------------------------|
| PROJECT OLIN CHEMICAL                      | ECT OLIN CHEMICAL SUPERFUND SITE, WILMINGTON, MA |                           |                                     |                              |                                         | WELL ID GW-307                     |                            |                  | COMPREHENSIVE ROUND,                     |
| SAMPLE ID OC-GW                            | 1-307-                                           | XXX                       |                                     | SITE                         |                                         | Superfund                          |                            | j                | DATE 5/29/2019                           |
| TIME START 1240                            | END                                              | ٠, ٦, ٦                   |                                     | JOB NUMBE                    |                                         | 6107190016                         |                            | ]                | BOTTLE TIME 13:18                        |
| WATER LEVEL / PUMP SET                     |                                                  |                           | REMENT POINT                        | JOB NOMBE                    | n                                       | 010/190010                         |                            | j                | BOTTLE TIME 1771G                        |
| QC SAMPLE COLLECTED ID                     | TINGS                                            | X TO                      | P OF WELL RISER P OF PROTECTIVE HER | CASING                       | PROTECTIVE<br>CASING STIC<br>(FROM GROU | KUP 2 10                           | FT.                        | CASI             | TECTIVE<br>ING/WELL<br>FERENCE -0.11 FT. |
| INITIAL DEPTH TO WATER 6.0                 | )3 F                                             | T. WELL D                 | 19.49                               | FT.                          | PID<br>AMBIENT AIR                      | N/A                                | PPM                        | WEL              | L<br>METER 2 IN.                         |
| FINAL DEPTH 8.0                            | 7 F                                              | T. SCREE                  | N 10                                |                              | PID WELL                                |                                    |                            | ,<br>] WEL       | L YES NO N/A                             |
|                                            | 326 GA                                           |                           | O OF DRAWDOWN                       |                              | MOUTH<br>PRESSURE                       | N/A                                | PPM                        | ] INTE           | CASING X                                 |
| (final - initial x 0.16 {2-inch}           | ACRES NATIONAL STREET                            | h}) TO                    | TOTAL VOLUME PU                     | IRGED                        | TO PUMP                                 | N/A                                | PSI                        | ]<br>] disc      | COLLAR                                   |
| PURGED 3.0 (purge rate (milliliters per mi | G/                                               |                           | 0.                                  |                              | TIMER<br>SETTING                        | N/A                                | SEC.                       | TIME<br>SET      | ER N/A SEC.                              |
| PURGE DATA                                 |                                                  |                           |                                     |                              |                                         |                                    |                            |                  |                                          |
| TIME DEPTH TO F WATER (ft.) (0.3 ft.)      | PURGE RATE<br>(ml/min)<br>(100-400)              | TEMP.<br>(deg. C)<br>(3%) | SPEC. COND.<br>(µS/cm)<br>(3%)      | pH (units)<br>(+/- 0.1 unit) | DISS. O2<br>(mg/L)<br>(10% > 0.5)       | TURBIDITY(NTU)<br>(10% if >5 NTU)* | ORP/Eh (mV)<br>(+/- 10 mV) | SAMPL<br>DEPTH ( |                                          |
| 1220 7.75                                  | 175                                              | 9.27                      | 0,392                               | 6.76                         | 2.94                                    | 18.6                               | -76.1                      | M17              | BEGIN PURCE                              |
| 1230 8.07                                  | 175                                              | 8.99                      | 0.387                               | 6.99                         | 1.34                                    | 13.7                               | -102.9                     | 1                |                                          |
|                                            | 135                                              | 9.03                      | 0.387                               | 7.08                         | 1.13                                    | 18.8                               | -112.7                     |                  | /                                        |
|                                            | 25                                               | 9.06                      | 0.397                               | 7.13                         | 1.09                                    | 31.8                               | -102.                      |                  | NTU CHANCE                               |
|                                            | 25                                               | 9.04                      | 0.419                               | 7.15                         | 0.97                                    | 34.9                               | -78.8                      |                  |                                          |
|                                            | 25                                               | 8.97                      | 0.428                               | 7.16                         | 0.93                                    | 37.2                               | -107.2                     |                  | SLOWER RATE                              |
| 10 10 11                                   | 100                                              | 9.05                      | 0.433                               | 7.16                         | 1.16                                    | 28.3                               | -110.6                     |                  | SWEEK KAIL                               |
| 1000 -0 100 000 00 000 000 000 000 000 0   | 100                                              | 9.05                      | 0.462                               | 7.18                         | 1.67                                    | 26.2                               | -82.9                      |                  |                                          |
| 12/4 6                                     | 100                                              | 9.08                      | 0.462                               | 7.19                         | 1.55                                    | 23.0                               | ~91.9                      |                  |                                          |
| 1315 8.07                                  | 160                                              | 9.64                      | 0.463                               | 7.19                         | 1.42                                    | 24.1                               | -97.3                      |                  |                                          |
| 1318                                       |                                                  | /                         |                                     | 7                            |                                         |                                    | /                          | ×                | SAMPLIE                                  |
| EQUIPMENT DOCUMENTAT                       | ΓΙΟΝ                                             |                           |                                     |                              |                                         | <b>.</b>                           |                            |                  |                                          |
| TYPE OF PUMP                               |                                                  | TYPE OF TUBIN             | <u>G</u>                            |                              | TYPE OF                                 | PUMP MATERIAL                      |                            |                  |                                          |
| QED BLADDER SIMCO BLADDER                  | ]                                                |                           | R TEFLON LINED<br>SITY POLYETHYLEN  | _                            |                                         | LYVINYL CHLORIDE<br>AINLESS STEEL  |                            |                  |                                          |
| X PERISTALTIC                              | ı<br>I                                           | X HIGH DENS               |                                     |                              |                                         |                                    | VEW OF                     | 129/20           | A PERGAPP                                |
| ANALYTICAL PARAMETERS To Be Collected      | <br>S                                            |                           | rhod                                | PR                           | ESERVATION                              | VOLUME                             | 4000 05                    | SAMPL            |                                          |
|                                            |                                                  | NUM                       | MBER                                | ME                           | THOD                                    | REQUIRED                           |                            | COLLECT          | <u>TED</u>                               |
| VOCs                                       |                                                  | 826                       | OC                                  | нс                           | L/4 DEG. C                              | 3 X 40 mL \                        | OC vial                    | 中                | VOCs                                     |
| Hydrazine, MMH, UDMI                       | Н                                                |                           | 18315 LC/MS/MS                      |                              | etate Buffer                            | 2 X 40 mL \                        |                            | =                | Hydrazine, MMH, UDMH                     |
| NDMA<br>Formaldehyde                       |                                                  |                           | lified - EPA 521<br>-846 8315A      |                              | )EG. C - no sunl<br>)EG. C              | -                                  | er Glass<br>Amber Glass    | =                | NDMA<br>Formaldehyde                     |
| Metals (Al, Cr, Fe, Mn, M                  | Mg, Na, As)                                      |                           | 0C/6020A                            |                              | ric Acid / 4 DEG                        |                                    |                            | =                | METALS                                   |
| Dissolved Metals (Al, Cr                   |                                                  |                           | 0C/6020A                            |                              | ric Acid / 4 DEG                        |                                    |                            | _                | DISSOLVED METALS                         |
| Hexavalent Chromium (                      | (Cr+6)                                           | 719                       | 9<br>\ 350.1                        |                              | EG. C - no heads<br>furic Acid / 4 DE   |                                    | (8)                        |                  | Hexavalent Chromium (Cr+6)<br>Ammonia    |
| Ammonia  Anions (Chloride & Sulfa          | ate)                                             | 300                       |                                     |                              | DEG. C                                  | G. C 1 X 250 mL<br>1 X 125 mL      |                            |                  | Anions (Chloride & Sulfate)              |
| Specific Gravity                           | 2127                                             |                           | 2710F                               |                              | EG. C                                   | 1 X 500 mL                         |                            |                  | Specific Gravity                         |
| PFAS                                       |                                                  | Mod                       | lified - EPA 537                    | < 6                          | DEG. C                                  | 2 X 250 mL                         | HDPE                       |                  | PFAS                                     |
| PURGE OBSERVATIONS                         |                                                  |                           |                                     |                              | LOCATION S                              | KETCH                              |                            |                  |                                          |
| PURGE WATER CONTAINERIZED YES              |                                                  | NUMBER OF GA<br>GENERATED | ^3.0                                |                              |                                         |                                    |                            |                  |                                          |
| NOTES                                      |                                                  |                           |                                     |                              |                                         |                                    |                            |                  |                                          |
| * = If 3 turbidity readings are            | e < 5 NTU, the                                   | n parameter is            | stable                              |                              |                                         |                                    |                            |                  |                                          |
| If Turbidity is > 25 NTU then              | collect a filte                                  | red metals san            | nple                                |                              |                                         |                                    |                            |                  | _                                        |
|                                            |                                                  |                           |                                     | 590                          |                                         |                                    |                            |                  | WOOD                                     |
|                                            |                                                  |                           |                                     |                              |                                         |                                    |                            |                  | WOOD.                                    |
| Sampled by: Sampler Signature:             | DESJARU                                          | 24                        |                                     | Ch                           | ecked by: 🔑                             | TM                                 |                            |                  |                                          |



## ATTACHMENT B DATA VALIDATION REPORT



# FINAL DATA VALIDATION REPORT REMEDIAL INVESTIGATION

# OPERABLE UNIT 3 PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS) GROUNDWATER SAMPLING EVENT

OLIN CHEMICAL SUPERFUND SITE
51 EAMES STREET
WILMINGTON, MASSACHUSETTS

Prepared for:

**Olin Corporation** 

3855 North Ocoee Street; Suite 200 Cleveland, Tennessee 37312

Prepared by:

Wood Environment & Infrastructure Solutions, Inc. 271 Mill Road

Chelmsford, Massachusetts 01824

**September 27, 2019** 

Project No. 6107190016.001.10



## **FINAL DATA VALIDATION REPORT REMEDIAL INVESTIGATION**

## **OPERABLE UNIT 3**

## PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS) **GROUNDWATER SAMPLING EVENT**

**OLIN CHEMICAL SUPERFUND SITE 51 EAMES STREET WILMINGTON, MASSACHUSETTS** 

**Prepared for:** 

**Olin Corporation** 

3855 North Ocoee Street; Suite 200 **Cleveland, Tennessee 37312** 

Prepared by:

**Wood Environment & Infrastructure Solutions, Inc.** 

271 Mill Road

Chelmsford, Massachusetts 01824

**September 27, 2019** 

Project No. 6107190016.001.10

Elizabeth Bowen

Project Manager

**Principal Scientist** 



## **TABLE OF CONTENTS**

| 1.0 | INTRODUCTION   | 1-1 |
|-----|----------------|-----|
| 2.0 | PFAS COMPOUNDS | 2-1 |
| 3.0 | REFERENCES     | 3-1 |

## **LIST OF TABLES**

| Table 1 | Sample Summary |
|---------|----------------|
|---------|----------------|

- Table 2 Final Results Summary
- Table 3 Data Validation Action Summary



## LIST OF ACRONYMS AND ABBREVIATIONS

%D % Difference

HT Holding Time

IS-L Internal Standard response below limit

J estimated value

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

MassDEP Massachusetts Department of Environmental Protection

mls milliliters MS Matrix Spike

MSD Matrix Spike Duplicate
MS-H Matrix Spike recovery high

PFAS Per- and Polyfluoroalkyl Substances

PFBS Perfluorobutanesulfonic acid
PFDoA Perfluorododecanoic acid
PFHpA Perfluoroheptanoic acid
PFHxA Perfluorohexanoic acid
PFHxS Perfluorohexanesulfonic acid

PFNA Perfluorononanoic acid PFTeDA Perfluorotetradecanoic acid

QAPP Quality Assurance Project Plan

SDG Sample Delivery Group

U Non-detect

UJ Reporting Limit Qualified as Estimated

USEPA United States Environmental Protection Agency

Wood Wood Environment & Infrastructure Solutions, Inc.



## 1.0 INTRODUCTION

Groundwater samples were collected by Wood Environment & Infrastructure Solutions, Inc. (Wood) at the Olin Chemical Superfund Site in May 2019. The sampling and analysis approach for this groundwater event was based on specifications detailed in the Addendum I Per- and Polyfluoroalkyl Substances (PFAS) Remedial Investigation/Feasibility Study Work Plan Project Operations Plan Volume III-B Quality Assurance Project Plan (Wood, 2019a) and Interim Guidance on Sampling and Analysis for PFAS at Disposal Sites Regulated under the Massachusetts Contingency Plan (Massachusetts Department of Environmental Protection [MassDEP], 2018). Samples were analyzed using the following analytical method:

| Laboratory                  | Parameter | Analytical<br>Method                                                                                     | Validation Level             |
|-----------------------------|-----------|----------------------------------------------------------------------------------------------------------|------------------------------|
| Eurofins –<br>Lancaster, PA | PFAS      | United States Environmental Protection Agency (USEPA) Method 537 Version 1.1 Modified (PFAS by LC-MS-MS) | 10% Stage 4/ 90%<br>Stage 2A |

The PFAS groundwater samples were collected from May 28 and May 29, 2019. Sample OC-MP-1#1-XXX was re-extracted and reanalyzed because the initial laboratory analysis was done at a high dilution and PFAS was not detected. The sample was reanalyzed at a lower dilution to obtain detection limits that were closer to achieving project data quality objectives. A summary of samples included in this data validation report is presented in **Table 1**. Analytical data packages were reviewed in accordance with the Olin Chemical Superfund Site Final Remedial Investigation/Feasibility Study Work Plan Quality Assurance Project Plan (QAPP) [Wood, 2019b] and specification in the QAPP Addendum I [Wood, 2019a]. Sample data were validated using staged data validation (USEPA, 2009) identified in Region 1 EPA-New England Environmental Data Review Program Guidance (USEPA, 2018), the general procedures identified in USEPA National Functional Guidelines (USEPA, 2017) and the judgment of the validator as applicable to the modified Method 537 procedure and method performance criteria were developed for this project as indicated in the QAPP Addendum I.

Final validated sample results are presented in **Table 2**. Documentation of data validation actions is presented in **Table 3**. **Table 3** is a summary of laboratory results that have been qualified (data validation has resulted in revisions to the laboratory result). An index of the qualification reason codes is presented in **Table 3**.





## **2.0 PFAS**

Samples were analyzed for 14 PFAS compounds identified in the QAPP Addendum I. The following items were reviewed during validation:

- Data Completeness
   Holding Times (HT) and Preservation
- \* Blanks
- Instrument Tunes
- \* Initial Calibration Standards
- Continuing Calibration Standards
- \* Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)
   Matrix Spikes (MS)/Matrix Spike Duplicates (MSD)
- \* Field Duplicates

Surrogate Recovery/Internal Standards

**Detection Limits** 

- \* Target Compound Identification
- \* Sample Result Verification/Electronic Database Verification
- Raw data verification and calculation checks
- \* = indicates that criteria were met for this parameter

Except for the validation actions noted below, sample results are interpreted to be usable as reported by the laboratory. A summary of final results is presented in **Table 2**. A summary of data validation actions is presented in **Table 3**.

## 2.1 Holding Times and Preservation

## Sample Delivery Group (SDG) TAO20 / Group 2052690

A reduced volume (2.5 milliliters [mls]) of sample OC-MP-1#1-XXX was extracted by the lab due to matrix interferences which resulted in an effective 100X dilution of the sample. PFAS compounds were reported as not detected with elevated reporting limits in this initial analysis. Due to this excessive dilution, the Olin Corporation requested sample OC-MP-1#1-XXX be re-extracted and analyzed. The sample was re-extracted at 10 mls which resulted in an effective 25X dilution of the sample. This re-extraction was performed eight days past the 14 day extraction hold time specified in the method. PFAS compounds were reported as not detected in the second analysis that was extracted outside of hold time. Results from the second analysis were reported in the final data set with elevated reporting limits that were qualified estimated (UJ).





A summary of holding time qualification actions is presented in **Table 3** with results being assigned a validation qualifier reason code of HT for sample holding times.

## 2.2 MS/MSD

## **SDG TAO18 / Group 2046067**

The MS and/or MSD associated with sample OC-GW-54D-XXX and its field duplicate OC-GW-54D-DUP had percent recoveries above the upper quality control limits for perfluorohexanoic acid (PFHxA)(144%/ 135%), perfluoroheptanoic acid (PFHpA) (141%/144%), perfluorohexanesulfonic acid (PFHxS) (MSD 139%), perfluorononanoic acid (PFNA) (142%/144%), perfluorododecanoic acid (PFDoA) (139%/140%), and perfluorotetradecanoic acid (PFTeDA) (MS 145%).

Detections of PFHxA, PFHpA and PFNA in samples OC-GW-54D-XXX and OC-GW-54D-DUP were qualified as estimated (J) due to the potential high bias. PFHxS, PFDoA and PFTeDA were nondetect in the associated samples and not impacted by the potential high bias and no qualifications were necessary. A summary of MS/MSD qualification actions is presented in **Table 3** for PFAS with results being assigned a validation qualifier reason code of MS-H.

### 2.3 Internal Standards

## **SDG TAO18 / Group 2046067**

The percent difference (%D) between the internal standard I13C3-PFBA in sample OC-MP-1#4-XXX and the initial calibration was outside of the control limit of 50 at -53 %D. The result for perfluorobutanesulfonic acid (PFBS) in sample OC-MP-1#4-XXX was qualified as estimated (J) and assigned a reason code of IS-L in **Table 3**.

## 2.4 Detection Limits

## **SDG TAO20 / Group 2052690**

Sample OC-MP-1#1-XXX was analyzed at dilution due to matrix interferences (see discussion in Section 2.1 above). Compounds reported as not detected in diluted sample have elevated detection limits. Sample quantitation limits for the sample are presented in **Table 2.** 

## 2.5 Data Usability

Except for the validation actions noted above, sample results are interpreted to be usable as reported by the laboratory. There were no results rejected during the validation review of the data contained in this report. Of the 196 results reported, 21 results (11%) were qualified as estimated due to hold time exceedances, low internal standard response, and/or high matrix spike recoveries. PFAS compounds were not detected in the laboratory blanks and the laboratory control spikes were with in QC limits specified in the QAPP, indicating good precision and accuracy for the data set.





## 3.0 REFERENCES

- MassDEP, 2018. Fact Sheet Interim Guidance on Sampling and Analysis for PFAS at Disposal Sites Regulated under the Massachusetts Contingency Plan; June 19.
- USEPA, 2009. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use"; Office of Solid Waste and Emergency Response; EPA-540-R-08-005; January 2009.
- USEPA, 2017. "USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review"; Office of Superfund Remediation and Technology Innovation; EPA-540-/R-2017-002; January 2017.
- USEPA, 2018. "Region I EPA-New England Environmental Data Review Program Guidance"; Office of Environmental Measurement and Evaluation (OEME); June 2018.
- Wood, 2019a. "Addendum I Per- and Polyfluoroalkyl Substances (PFAS) Final Remedial Investigation/Feasibility Study Project Operations Plan"; Volume III-B Quality Assurance Project Plan; Olin Chemical Superfund Site; 51 Eames Street; Wilmington, MA; May, 2019.
- Wood, 2019b. "Final Remedial Investigation/Feasibility Study Project Operations Plan"; Volume III-B Quality Assurance Project Plan; Olin Chemical Superfund Site; 51 Eames Street; Wilmington, MA; May, 2019.

Data validation was completed by:

Elizabeth Penta

## **TABLES**

|                |                  |          |                 |       | Analys      | Lab ID   | Lancast<br>EPA 537.1 MOD |
|----------------|------------------|----------|-----------------|-------|-------------|----------|--------------------------|
|                |                  |          |                 |       | Allalys     |          |                          |
| Lab Sample     | Laboratory Group |          |                 |       |             | Fraction | N N                      |
| Delivery Group | Number           | Location | Field Sample ID | Media | Sample Date | QC Code  | Param_Count              |
| TAO18          | 2046391          | GW-10DR  | OC-GW-10DR-XXX  | GW    | 5/29/2019   | FS       | 14                       |
| TAO18          | 2046391          | GW-305   | OC-GW-305-XXX   | GW    | 5/29/2019   | FS       | 14                       |
| TAO18          | 2046391          | GW-307   | OC-GW-307-XXX   | GW    | 5/29/2019   | FS       | 14                       |
| TAO20          | 2052690          | MP-1 #01 | OC-MP-1#1-XXX   | GW    | 5/29/2019   | FS       | 14                       |
| TAO18          | 2046391          | MP-1 #04 | OC-MP-1#4-XXX   | GW    | 5/29/2019   | FS       | 14                       |
| TAO18          | 2046391          | MP-1 #14 | OC-MP-1#14-XXX  | GW    | 5/29/2019   | FS       | 14                       |
| TAO18          | 2046067          | BR-1     | OC-BR-1-XXX     | GW    | 5/28/2019   | FS       | 14                       |
| TAO18          | 2046067          | QC       | OC-FB-052819    | BW    | 5/28/2019   | FB       | 14                       |
| TAO18          | 2046067          | GW-101   | OC-GW-101-XXX   | GW    | 5/28/2019   | FS       | 14                       |
| TAO18          | 2046067          | GW-15    | OC-GW-15-XXX    | GW    | 5/28/2019   | FS       | 14                       |
| TAO18          | 2046067          | GW-16R   | OC-GW-16R-XXX   | GW    | 5/28/2019   | FS       | 14                       |
| TAO18          | 2046067          | GW-32D   | OC-GW-32D-XXX   | GW    | 5/28/2019   | FS       | 14                       |
| TAO18          | 2046067          | GW-32S   | OC-GW-32S-XXX   | GW    | 5/28/2019   | FS       | 14                       |
| TAO18          | 2046067          | GW-54D   | OC-GW-54D-DUP   | GW    | 5/28/2019   | FD       | 14                       |
| TAO18          | 2046067          | GW-54D   | OC-GW-54D-XXX   | GW    | 5/28/2019   | FS       | 14                       |

Created by: KMS 7/25/19

Checked by: EAP 8/14/19

Notes: Lancast= Eurofins Lancaster Laboratories Environmental, LLC.

BW = Blank water

FB = Field Blank

FD = Field Duplicate

FS = Field Sample

GW = Groundwater

Fraction = N- Normal

|               |          |                                                            | Location   | 2046067          | 2046067          | 2046067          | 2046067          | 2046067          |
|---------------|----------|------------------------------------------------------------|------------|------------------|------------------|------------------|------------------|------------------|
|               |          | Lab Sample Deliv                                           |            |                  | GW-101           | GW-15            | GW-16R           | GW-32D           |
|               |          | Field Sa                                                   | ample Date | 5/28/2019        | 5/28/2019        | 5/28/2019        | 5/28/2019        | 5/28/2019        |
|               |          | Field                                                      | Sample ID  | OC-BR-1-XXX      | OC-GW-101-XXX    | OC-GW-15-XXX     | OC-GW-16R-XXX    | OC-GW-32D-XXX    |
|               |          |                                                            | QC Code    | FS               | FS               | FS               | FS               | FS               |
| Method        | Fraction | Parameter                                                  | Units      | Result Qualifier |
| EPA 537.1 MOD | N        | N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)  | ng/l       | 2.7 U            | 2.5 U            | 2.7 U            | 2.6 U            | 1.8 J            |
| EPA 537.1 MOD | N        | N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | ng/l       | 2.7 U            | 2.5 U            | 2.7 U            | 2.6 U            | 2.7 U            |
| EPA 537.1 MOD | N        | Perfluorobutanesulfonic acid (PFBS)                        | ng/l       | 0.78 J           | 0.76 J           | 0.99             | 0.83 J           | 0.87 J           |
| EPA 537.1 MOD | Ν        | Perfluorodecanoic acid (PFDA)                              | ng/l       | 1.8 U            | 1.7 U            | 1.8 U            | 1.7 U            | 1.8 U            |
| EPA 537.1 MOD | N        | Perfluorododecanoic acid (PFDoA)                           | ng/l       | 1.8 U            | 1.7 U            | 1.8 U            | 1.7 U            | 1.8 U            |
| EPA 537.1 MOD | N        | Perfluoroheptanoic acid (PFHpA)                            | ng/l       | 2.1              | 2.3              | 0.52 J           | 0.89             | 1.4              |
| EPA 537.1 MOD | N        | Perfluorohexanesulfonic acid (PFHxS)                       | ng/l       | 1.1 J            | 1.7 U            | 0.44 J           | 1.7 U            | 0.65 J           |
| EPA 537.1 MOD | N        | Perfluorohexanoic acid (PFHxA)                             | ng/l       | 3.4              | 5.3              | 0.68 J           | 1.6 J            | 1.8 J            |
| EPA 537.1 MOD | N        | Perfluorononanoic acid (PFNA)                              | ng/l       | 1.1 J            | 1.3 J            | 1.8 U            | 0.55 J           | 0.97 J           |
| EPA 537.1 MOD | N        | Perfluorooctanessulfonic acid (PFOS)                       | ng/l       | 6.4              | 5.1              | 3.5              | 2                | 8.1              |
| EPA 537.1 MOD | N        | Perfluorooctanoic acid (PFOA)                              | ng/l       | 8.4              | 5.2              | 2.5              | 3.2              | 5                |
| EPA 537.1 MOD | N        | Perfluorotetradecanoic acid (PFTeDA)                       | ng/l       | 0.91 U           | 0.84 U           | 0.9 U            | 0.86 U           | 0.9 U            |
| EPA 537.1 MOD | N        | Perfluorotridecanoic acid (PFTrDA)                         | ng/l       | 0.91 U           | 0.84 U           | 0.9 U            | 0.86 U           | 0.9 U            |
| EPA 537.1 MOD | N        | Perfluoroundecanoic acid (PFUnDA)                          | ng/l       | 1.8 U            | 1.7 U            | 1.8 U            | 1.7 U            | 1.8 U            |

#### Notes:

FS = field sample; FB = field blank
U = Not detected, value is the reporting limit
J = Value is estimated
ng/l = nanograms per liter

|               |          |                                                            | Location   | 2046067          | 2046067          | 2046067          | 2046067          |
|---------------|----------|------------------------------------------------------------|------------|------------------|------------------|------------------|------------------|
|               |          | Lab Sample Deli                                            | very Group | GW-32S           | GW-54D           | GW-54D           | QC               |
|               |          |                                                            | ample Date |                  | 5/28/2019        | 5/28/2019        | 5/28/2019        |
|               |          | Field                                                      | Sample ID  | OC-GW-32S-XXX    | OC-GW-54D-DUP    | OC-GW-54D-XXX    | OC-FB-052819     |
|               |          |                                                            | QC Code    | FS               | FD               | FS               | FB               |
| Method        | Fraction | Parameter                                                  | Units      | Result Qualifier | Result Qualifier | Result Qualifier | Result Qualifier |
| EPA 537.1 MOD | N        | N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)  | ng/l       | 2.7 U            | 2.7 U            | 2.7 U            | 2.6 U            |
| EPA 537.1 MOD | N        | N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | ng/l       | 2.7 U            | 2.7 U            | 2.7 U            | 2.6 U            |
| EPA 537.1 MOD | N        | Perfluorobutanesulfonic acid (PFBS)                        | ng/l       | 0.91 U           | 0.49 J           | 0.54 J           | 0.87 U           |
| EPA 537.1 MOD | N        | Perfluorodecanoic acid (PFDA)                              | ng/l       | 1.8 U            | 1.8 U            | 1.8 U            | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluorododecanoic acid (PFDoA)                           | ng/l       | 1.8 U            | 1.8 U            | 1.8 U            | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluoroheptanoic acid (PFHpA)                            | ng/l       | 0.45 J           | 1.1 J            | 1.1 J            | 0.87 U           |
| EPA 537.1 MOD | N        | Perfluorohexanesulfonic acid (PFHxS)                       | ng/l       | 1.8 U            | 1.8 U            | 1.8 U            | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluorohexanoic acid (PFHxA)                             | ng/l       | 1.8 U            | 1.8 J            | 1.7 J            | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluorononanoic acid (PFNA)                              | ng/l       | 1.8 U            | 1 J              | 1.1 J            | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluorooctanessulfonic acid (PFOS)                       | ng/l       | 0.51 J           | 1.5 J            | 1.6 J            | 1.7 U            |
| EPA 537.1 MOD | N        | Perfluorooctanoic acid (PFOA)                              | ng/l       | 1.7              | 2.2              | 2.4              | 0.87 U           |
| EPA 537.1 MOD | N        | Perfluorotetradecanoic acid (PFTeDA)                       | ng/l       | 0.91 U           | 0.89 U           | 0.89 U           | 0.87 U           |
| EPA 537.1 MOD | N        | Perfluorotridecanoic acid (PFTrDA)                         | ng/l       | 0.91 U           | 0.89 U           | 0.89 U           | 0.87 U           |
| EPA 537.1 MOD | N        | Perfluoroundecanoic acid (PFUnDA)                          | ng/l       | 1.8 U            | 1.8 U            | 1.8 U            | 1.7 U            |

#### Notes:

FS = field sample; FB = field blank
U = Not detected, value is the reporting limit
J = Value is estimated
ng/l = nanograms per liter

|               |          |                                                            | Location    | 2046    | 6391      | 2046391          | 2046   | 391       | 2046   | 6391      |
|---------------|----------|------------------------------------------------------------|-------------|---------|-----------|------------------|--------|-----------|--------|-----------|
|               |          | Lab Sample Del                                             | ivery Group | GW-     | 10DR      | GW-305           | GW-    | 307       | MP-    | 1 #04     |
|               |          | Field S                                                    | Sample Date | 5/29/   | /2019     | 5/29/2019        | 5/29/  | 2019      | 5/29/  | 2019      |
|               |          | Field                                                      | d Sample ID | OC-GW-1 | I0DR-XXX  | OC-GW-305-XXX    | OC-GW- | 307-XXX   | OC-MP- | 1#4-XXX   |
|               |          |                                                            | QC Code     | F       | S         | FS               | F      | S         | F      | S         |
| Method        | Fraction | Parameter                                                  | Units       | Result  | Qualifier | Result Qualifier | Result | Qualifier | Result | Qualifier |
| EPA 537.1 MOD | N        | N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)  | ng/l        | 2.7     | U         | 2.6 U            | 2.7    | U         | 2.7    | U         |
| EPA 537.1 MOD | N        | N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | ng/l        | 2.7     | U         | 2.6 U            | 2.7    | U         | 2.7    | U         |
| EPA 537.1 MOD | N        | Perfluorobutanesulfonic acid (PFBS)                        | ng/l        | 0.7     | J         | 0.55 J           | 1.2    |           | 0.42   | J         |
| EPA 537.1 MOD | N        | Perfluorodecanoic acid (PFDA)                              | ng/l        | 1.8     | U         | 1.7 U            | 1.8    | U         | 1.8    | U         |
| EPA 537.1 MOD | N        | Perfluorododecanoic acid (PFDoA)                           | ng/l        | 1.8     | C         | 1.7 U            | 1.8    | U         | 1.8    | U         |
| EPA 537.1 MOD | N        | Perfluoroheptanoic acid (PFHpA)                            | ng/l        | 1.8     |           | 1.3              | 1.9    |           | 0.9    | U         |
| EPA 537.1 MOD | N        | Perfluorohexanesulfonic acid (PFHxS)                       | ng/l        | 0.38    | J         | 1.7 U            | 1.8    | U         | 0.61   | J         |
| EPA 537.1 MOD | N        | Perfluorohexanoic acid (PFHxA)                             | ng/l        | 1.7 、   | J         | 1.2 J            | 2.5    |           | 2.4    |           |
| EPA 537.1 MOD | N        | Perfluorononanoic acid (PFNA)                              | ng/l        | 1 .     | J         | 0.69 J           | 1.1    | J         | 0.82   | J         |
| EPA 537.1 MOD | N        | Perfluorooctanessulfonic acid (PFOS)                       | ng/l        | 1.6 、   | J         | 1.7 J            | 2.8    |           | 4.8    |           |
| EPA 537.1 MOD | N        | Perfluorooctanoic acid (PFOA)                              | ng/l        | 6.4     |           | 2.9              | 5.4    |           | 11     |           |
| EPA 537.1 MOD | N        | Perfluorotetradecanoic acid (PFTeDA)                       | ng/l        | 0.89    | U         | 0.86 U           | 0.88   | U         | 0.9    | U         |
| EPA 537.1 MOD | N        | Perfluorotridecanoic acid (PFTrDA)                         | ng/l        | 0.89    | U         | 0.86 U           | 0.88   | U         | 0.9    | U         |
| EPA 537.1 MOD | N        | Perfluoroundecanoic acid (PFUnDA)                          | ng/l        | 1.8     | U         | 1.7 U            | 1.8    | U         | 1.8    | U         |

#### Notes:

FS = field sample; FB = field blank
U = Not detected, value is the reporting limit
J = Value is estimated
ng/l = nanograms per liter

Created by: KMS 8/15/19

Checked by: EAP 8/15/19

|               |          |                                                            | Location     | 2046391          | 2052690          |
|---------------|----------|------------------------------------------------------------|--------------|------------------|------------------|
|               |          | Lab Sample De                                              | livery Group | MP-1 #14         | MP-1 #01         |
|               |          | Field S                                                    | Sample Date  | 5/29/2019        | 5/29/2019        |
|               |          | Fiel                                                       | d Sample ID  | OC-MP-1#14-XXX   | OC-MP-1#1-XXX    |
|               |          |                                                            | QC Code      | FS               | FS               |
| Method        | Fraction |                                                            | Units        | Result Qualifier | Result Qualifier |
| EPA 537.1 MOD | N        | N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)  | ng/l         | 2.7 U            | 75 UJ            |
| EPA 537.1 MOD | N        | N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | ng/l         | 2.7 U            | 75 UJ            |
| EPA 537.1 MOD | N        | Perfluorobutanesulfonic acid (PFBS)                        | ng/l         | 0.82 J           | 25 UJ            |
| EPA 537.1 MOD | N        | Perfluorodecanoic acid (PFDA)                              | ng/l         | 1.8 U            | 50 UJ            |
| EPA 537.1 MOD | N        | Perfluorododecanoic acid (PFDoA)                           | ng/l         | 1.8 U            | 50 UJ            |
| EPA 537.1 MOD | N        | Perfluoroheptanoic acid (PFHpA)                            | ng/l         | 1.5              | 25 UJ            |
| EPA 537.1 MOD | N        | Perfluorohexanesulfonic acid (PFHxS)                       | ng/l         | 0.47 J           | 50 UJ            |
| EPA 537.1 MOD | N        | Perfluorohexanoic acid (PFHxA)                             | ng/l         | 2                | 50 UJ            |
| EPA 537.1 MOD | N        | Perfluorononanoic acid (PFNA)                              | ng/l         | 1.2 J            | 50 UJ            |
| EPA 537.1 MOD | N        | Perfluorooctanessulfonic acid (PFOS)                       | ng/l         | 2.8              | 50 UJ            |
| EPA 537.1 MOD | N        | Perfluorooctanoic acid (PFOA)                              | ng/l         | 5.1              | 25 UJ            |
| EPA 537.1 MOD | N        | Perfluorotetradecanoic acid (PFTeDA)                       | ng/l         | 0.9 U            | 25 UJ            |
| EPA 537.1 MOD | N        | Perfluorotridecanoic acid (PFTrDA)                         | ng/l         | 0.9 U            | 25 UJ            |
| EPA 537.1 MOD | N        | Perfluoroundecanoic acid (PFUnDA)                          | ng/l         | 1.8 U            | 50 UJ            |

Notes:

FS = field sample; FB = field blank

U = Not detected, value is the reporting limit

J = Value is estimated

ng/l = nanograms per liter

| Lab Sample<br>Delivery<br>Group | Analysis Method | Lab<br>Sample ID | Field Sample ID | Parameter                                                  | Lab<br>Result  | Lab<br>Qualifier | Final<br>Result | Final<br>Qualifier | Val<br>Reason<br>Code | Units | Lab ID  |
|---------------------------------|-----------------|------------------|-----------------|------------------------------------------------------------|----------------|------------------|-----------------|--------------------|-----------------------|-------|---------|
| 2046067                         | EPA 537.1 MOD   | 1067736          | OC-GW-54D-DUP   | Perfluoroheptanoic acid (PFHpA)                            | 1.1            |                  | 1.1             | J                  | MS-H                  | ng/l  | Lancast |
| 2046067                         | EPA 537.1 MOD   | 1067736          |                 | Perfluorohexanoic acid (PFHxA)                             | 1.8            | J                | 1.8             |                    | MS-H, Q               | ng/l  | Lancast |
| 2046067                         | EPA 537.1 MOD   | 1067736          |                 | Perfluorononanoic acid (PFNA)                              | 1              |                  | 1               | J                  | MS-H, Q               | ng/l  | Lancast |
| 2046067                         | EPA 537.1 MOD   | 1067737          |                 | Perfluoroheptanoic acid (PFHpA)                            | 1.1            |                  | 1.1             | J                  | MS-H                  | ng/l  | Lancast |
| 2046067                         | EPA 537.1 MOD   | 1067737          | OC-GW-54D-XXX   | Perfluorohexanoic acid (PFHxA)                             | 1.7            | J                | 1.7             | J                  | MS-H, Q               | ng/l  | Lancast |
| 2046067                         | EPA 537.1 MOD   | 1067737          | OC-GW-54D-XXX   | Perfluorononanoic acid (PFNA)                              | 1.1            | J                | 1.1             | J                  | MS-H, Q               | ng/l  | Lancast |
| 2046391                         | EPA 537.1 MOD   | 1069025          | OC-MP-1#4-XXX   | Perfluorobutanesulfonic acid (PFBS)                        | 0.42           | J                | 0.42            | J                  | IS-L, Q               | ng/l  | Lancast |
| 2052690                         | EPA 537.1 MOD   | 1097483          | OC-MP-1#1-XXX   | N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)  | 75             | U                | 75              | UJ                 | HT                    | ng/l  | Lancast |
| 2052690                         | EPA 537.1 MOD   | 1097483          | OC-MP-1#1-XXX   | N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | ) 75 U 75 UJ I |                  | HT              | ng/l               | Lancast               |       |         |
| 2052690                         | EPA 537.1 MOD   | 1097483          | OC-MP-1#1-XXX   | Perfluorobutanesulfonic acid (PFBS)                        | 25             | U                | 25              |                    | HT                    | ng/l  | Lancast |
| 2052690                         | EPA 537.1 MOD   | 1097483          | OC-MP-1#1-XXX   | Perfluorodecanoic acid (PFDA)                              | 50             | U                | 50              |                    | HT                    | ng/l  | Lancast |
| 2052690                         | EPA 537.1 MOD   | 1097483          | OC-MP-1#1-XXX   | Perfluorododecanoic acid (PFDoA)                           | 50             | U                | 50              | UJ                 | HT                    | ng/l  | Lancast |
| 2052690                         | EPA 537.1 MOD   | 1097483          | OC-MP-1#1-XXX   | Perfluoroheptanoic acid (PFHpA)                            | 25             | U                | 25              |                    | HT                    | ng/l  | Lancast |
| 2052690                         | EPA 537.1 MOD   | 1097483          | OC-MP-1#1-XXX   | Perfluorohexanesulfonic acid (PFHxS)                       | 50             | U                | 50              | UJ                 | HT                    | ng/l  | Lancast |
| 2052690                         | EPA 537.1 MOD   | 1097483          |                 | Perfluorohexanoic acid (PFHxA)                             | 50             | U                | 50              | UJ                 | HT                    | ng/l  | Lancast |
| 2052690                         | EPA 537.1 MOD   | 1097483          | OC-MP-1#1-XXX   | Perfluorononanoic acid (PFNA)                              | 50             | U                | 50              | UJ                 | HT                    | ng/l  | Lancast |
| 2052690                         | EPA 537.1 MOD   | 1097483          | OC-MP-1#1-XXX   | Perfluorooctanessulfonic acid (PFOS)                       | 50             | U                | 50              | UJ                 | HT                    | ng/l  | Lancast |
| 2052690                         | EPA 537.1 MOD   | 1097483          | OC-MP-1#1-XXX   | Perfluorooctanoic acid (PFOA)                              | 25             | U                | 25              | UJ                 | HT                    | ng/l  | Lancast |
| 2052690                         | EPA 537.1 MOD   | 1097483          | OC-MP-1#1-XXX   | Perfluorotetradecanoic acid (PFTeDA)                       | 25             | U                | 25              | UJ                 | HT                    | ng/l  | Lancast |
| 2052690                         | EPA 537.1 MOD   | 1097483          | OC-MP-1#1-XXX   | Perfluorotridecanoic acid (PFTrDA)                         | 25             | U                | 25              | UJ                 | HT                    | ng/l  | Lancast |
| 2052690                         | EPA 537.1 MOD   | 1097483          | OC-MP-1#1-XXX   | Perfluoroundecanoic acid (PFUnDA)                          | 50             | U                | 50              | UJ                 | HT                    | ng/l  | Lancast |

### Units:

ng/l = nanograms per liter

### Validation Qualifiers:

U = Not detected, value is the reporting limit

J = Value is estimated

### **Validation Reason Codes:**

HT = Holding time for prep or analysis exceeded

IS-L = Internal standard response below limit

MS-H = MS and/or MSD recovery high

Q = Constituent was detected between the MDL and RL

Prepared by / Date: KMS 8/15/19 Checked by / Date: EAP 8/15/19



## ATTACHMENT C LABORATORY ANALYTICAL REPORT









#### **ANALYSIS REPORT**

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

TestAmerica 501 Southampton Road Suite C Westfield MA 01085

Report Date: June 07, 2019 15:28

**Project: Olin Wilmington** 

Account #: 01042 Group Number: 2046067 SDG: TAO18 PO Number: 48006612 Release Number: REWI0025 State of Sample Origin: MA

Electronic Copy To Olin Chemicals Attn: James Cashwell Electronic Copy To Olin Corporation Attn: Chinny Esakkiperumal Attn: Binks Colby-George Electronic Copy To Wood PLC Attn: Tige Cunningham Electronic Copy To Wood PLC Electronic Copy To Wood PLC Attn: Chris Ricardi Electronic Copy To Wood PLC Attn: Karen Savage Electronic Copy To Wood PLC Attn: Peter Thompson Electronic Copy To Wood PLC Attn: Chris Mazzolini Electronic Copy To Wood Attn: Elizabeth Penta

Respectfully Submitted,

Zyn M. Frederiksen

Principal Specialist Group Leader

(717) 556-7255

To view our laboratory's current scopes of accreditation please go to <a href="https://www.eurofinsus.com/environment-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/">https://www.eurofinsus.com/environmental-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/</a>. Historical copies may be requested through your project manager.



### Lancaster Laboratories Environmental







2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

### **SAMPLE INFORMATION**

| Client Sample Description | Sample Collection Date/Time | ELLE#   |
|---------------------------|-----------------------------|---------|
| OC-FB-052819 Water        | 05/28/2019 13:15            | 1067731 |
| OC-GW-15-XXX Groundwater  | 05/28/2019 15:57            | 1067732 |
| OC-GW-16R-XXX Groundwater | 05/28/2019 13:47            | 1067733 |
| OC-GW-32D-XXX Groundwater | 05/28/2019 15:05            | 1067734 |
| OC-GW-32S-XXX Groundwater | 05/28/2019 15:55            | 1067735 |
| OC-GW-54D-DUP Groundwater | 05/28/2019 13:30            | 1067736 |
| OC-GW-54D-XXX Groundwater | 05/28/2019 13:30            | 1067737 |
| OC-GW-54D-MS Groundwater  | 05/28/2019 13:30            | 1067738 |
| OC-GW-54D-MSD Groundwater | 05/28/2019 13:30            | 1067739 |
| OC-BR-1-XXX Groundwater   | 05/28/2019 17:30            | 1067740 |
| OC-GW-101-XXX Groundwater | 05/28/2019 18:13            | 1067741 |

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.



### Lancaster Laboratories Environmental







2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

### **MADEP MCP Analytical Method Report Certification Form**

Laboratory Name: Eurofins Lancaster Laboratories Environmental

Project: Olin Wilmington

This form provides certifications for the following data set: 1067731-1067741

Sample Matrices: Water

Methods Used:

EPA 537 Version 1.1 Modified

| Affir    | mative responses to questions A through F are required for "Presumptive Certainty" status                      | Yes or No <sup>1</sup> |
|----------|----------------------------------------------------------------------------------------------------------------|------------------------|
| Α        | Were all samples received in a condition consistent with those described on the Chain-of-                      |                        |
|          | Custody, properly preserved (including temperature) in the field or laboratory, and                            | Yes                    |
|          | prepared/analyzed within method holding times?                                                                 |                        |
| В        | Were the analytical method(s) and all associated QC requirements specified in the selected                     | Yes                    |
|          | CAM protocol(s) followed?                                                                                      | 100                    |
| С        | Were all required corrective actions and analytical response actions specified in the selected                 | Yes                    |
|          | CAM protocol(s) implemented for all identified performance standard non-conformances?                          | 103                    |
| D        | Does the laboratory report comply with all the reporting requirements specified in CAM VII A,                  |                        |
|          | "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of                         | Yes                    |
|          | Analytical Data"?                                                                                              |                        |
| Е        | VPH, EPH, APH, and TO-15 only:                                                                                 |                        |
|          | a. VPH, EPH, and APH Methods only: Was each method conducted without significant                               | NA                     |
|          | modification(s)? (Refer to the individual method(s) for a list of significant modifications).                  |                        |
|          | b. APH and TO-15 Methods only. Was the complete analyte list reported for each method?                         | NA                     |
| F        | Were all applicable CAM protocol QC and performance standard non-conformances identified                       | Yes                    |
|          | and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?               | 1.00                   |
|          | ponses to Questions G, H and I below are required for "Presumptive Certainty" status                           | 1                      |
| G        | Were the reporting limits at or below all CAM reporting limits specified in the selected CAM                   | Yes                    |
|          | protocol(s)?                                                                                                   |                        |
|          | <u>Data User Note</u> : Data that achieve "Presumptive Certainty" status may not necessarily meet the data usa | bility                 |
|          | and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.                       | l NI-                  |
| <u>H</u> | Were all QC performance standards specified in the CAM protocol(s) achieved?                                   | No                     |
| 1 -      | Were results reported for the complete analyte list specified in the selected CAM protocol(s)?                 | Yes                    |
|          | fer to the Case Narrative for information regarding negative responses.                                        |                        |
|          | e undersigned, attest under the pains and penalties of perjury that the material contained in this an          | alytical               |
| repo     | ort is, to the best of my knowledge and belief, accurate and complete.                                         |                        |

Christiane S. Sweigart Senior Specialist



### Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: Olin Wilmington ELLE Group #: 2046067

#### **General Comments:**

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below.

Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

#### **Analysis Specific Comments:**

#### EPA 537 Version 1.1 Modified, LC/MS/MS Miscellaneous

Batch #: 19151009 (Sample number(s): 1067731-1067741 UNSPK: 1067737)

The recovery(ies) for the following analyte(s) in the MS and/or MSD exceeded the acceptance window indicating a positive bias: Perfluorononanoic acid, Perfluorododecanoic acid, Perfluorohexanoic acid, Perfluorotetradecanoic acid, Perfluorotetradecanoic acid

The recovery(ies) for one or more surrogates exceeded the acceptance window indicating a positive bias for sample(s) 1067739, MSD

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-FB-052819 Water

**Olin Wilmington** 

Project Name: Olin Wilmington

 Submittal Date/Time:
 05/29/2019 10:20

 Collection Date/Time:
 05/28/2019 13:15

 SDG#:
 TAO18-01FB

TestAmerica

ELLE Sample #: GW 1067731 ELLE Group #: 2046067

Matrix: Water

| CAT<br>No. | Analysis Name                                          | CAS Number                              | Result                     | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|--------------------------------------------------------|-----------------------------------------|----------------------------|--------------------------|--------------------|
| LC/MS      | 6/MS Miscellaneous EPA 53<br>Modifie                   | 7 Version 1.1                           | ng/l                       | ng/l                     |                    |
| 14473      | NEtFOSAA¹<br>NEtFOSAA is the acronym for N-ethy        | 2991-50-6<br>/I perfluorooctanesulfona  | N.D.<br>midoacetic Acid.   | 2.6                      | 1                  |
| 14473      | NMeFOSAA <sup>1</sup> NMeFOSAA is the acronym for N-me | 2355-31-9<br>ethyl perfluorooctanesulfo | N.D.<br>namidoacetic Acid. | 2.6                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                          | 375-73-5                                | N.D.                       | 0.87                     | 1                  |
| 14473      | Perfluorodecanoic acid1                                | 335-76-2                                | N.D.                       | 1.7                      | 1                  |
| 14473      | Perfluorododecanoic acid1                              | 307-55-1                                | N.D.                       | 1.7                      | 1                  |
| 14473      | Perfluoroheptanoic acid1                               | 375-85-9                                | N.D.                       | 0.87                     | 1                  |
| 14473      | Perfluorohexanesulfonic acid1                          | 355-46-4                                | N.D.                       | 1.7                      | 1                  |
| 14473      | Perfluorohexanoic acid1                                | 307-24-4                                | N.D.                       | 1.7                      | 1                  |
| 14473      | Perfluorononanoic acid1                                | 375-95-1                                | N.D.                       | 1.7                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                          | 1763-23-1                               | N.D.                       | 1.7                      | 1                  |
| 14473      | Perfluorooctanoic acid1                                | 335-67-1                                | N.D.                       | 0.87                     | 1                  |
| 14473      | Perfluorotetradecanoic acid1                           | 376-06-7                                | N.D.                       | 0.87                     | 1                  |
| 14473      | Perfluorotridecanoic acid1                             | 72629-94-8                              | N.D.                       | 0.87                     | 1                  |
| 14473      | Perfluoroundecanoic acid1                              | 2058-94-8                               | N.D.                       | 1.7                      | 1                  |

### **Sample Comments**

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

#### **Laboratory Sample Analysis Record** Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution Date and Time No. Factor EPA 537 Version 1.1 14473 14 PFAS 19151009 Jason W Knight 06/05/2019 00:23 Modified EPA 537 Version 1.1 PFAS Water Prep 1 19151009 05/31/2019 16:30 Isaac Phillips-Cary 1 14091 Modified

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

GW 1067732

2046067

TestAmerica ELLE Sample #:

**ELLE Group #:** 

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-GW-15-XXX Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

Submittal Date/Time: 05/29/2019 10:20
Collection Date/Time: 05/28/2019 15:57

SDG#: TAO18-02

| CAT<br>No. | Analysis Name                                              | CAS Number                            | Result                     | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|------------------------------------------------------------|---------------------------------------|----------------------------|--------------------------|--------------------|
| LC/MS      | S/MS Miscellaneous EPA 537<br>Modified                     | ng/l                                  | ng/l                       |                          |                    |
| 14473      | NEtFOSAA <sup>1</sup> NEtFOSAA is the acronym for N-ethyl  | 2991-50-6<br>perfluorooctanesulfona   | N.D.<br>midoacetic Acid.   | 2.7                      | 1                  |
| 14473      | NMeFOSAA <sup>1</sup><br>NMeFOSAA is the acronym for N-met | 2355-31-9<br>hyl perfluorooctanesulfo | N.D.<br>namidoacetic Acid. | 2.7                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                              | 375-73-5                              | 0.99                       | 0.90                     | 1                  |
| 14473      | Perfluorodecanoic acid1                                    | 335-76-2                              | N.D.                       | 1.8                      | 1                  |
| 14473      | Perfluorododecanoic acid <sup>1</sup>                      | 307-55-1                              | N.D.                       | 1.8                      | 1                  |
| 14473      | Perfluoroheptanoic acid <sup>1</sup>                       | 375-85-9                              | 0.52 J                     | 0.90                     | 1                  |
| 14473      | Perfluorohexanesulfonic acid1                              | 355-46-4                              | 0.44 J                     | 1.8                      | 1                  |
| 14473      | Perfluorohexanoic acid <sup>1</sup>                        | 307-24-4                              | 0.68 J                     | 1.8                      | 1                  |
| 14473      | Perfluorononanoic acid1                                    | 375-95-1                              | N.D.                       | 1.8                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                              | 1763-23-1                             | 3.5                        | 1.8                      | 1                  |
| 14473      | Perfluorooctanoic acid1                                    | 335-67-1                              | 2.5                        | 0.90                     | 1                  |
| 14473      | Perfluorotetradecanoic acid1                               | 376-06-7                              | N.D.                       | 0.90                     | 1                  |
| 14473      | Perfluorotridecanoic acid <sup>1</sup>                     | 72629-94-8                            | N.D.                       | 0.90                     | 1                  |
| 14473      | Perfluoroundecanoic acid1                                  | 2058-94-8                             | N.D.                       | 1.8                      | 1                  |

### **Sample Comments**

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

#### **Laboratory Sample Analysis Record** Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution Date and Time No. Factor EPA 537 Version 1.1 14473 14 PFAS 19151009 06/05/2019 00:33 Jason W Knight Modified EPA 537 Version 1.1 PFAS Water Prep 19151009 05/31/2019 16:30 Isaac Phillips-Cary 1 14091 Modified

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

GW 1067733

2046067

TestAmerica ELLE Sample #:

**ELLE Group #:** 

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-GW-16R-XXX Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

SDG#: TAO18-03

| CAT<br>No. | Analysis Name                                                | CAS Number                            | Result                      | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|--------------------------------------------------------------|---------------------------------------|-----------------------------|--------------------------|--------------------|
| LC/MS      | /MS Miscellaneous EPA 537<br>Modified                        | Version 1.1                           | ng/l                        | ng/l                     |                    |
| 14473      | NEtFOSAA <sup>1</sup><br>NEtFOSAA is the acronym for N-ethyl | 2991-50-6<br>perfluorooctanesulfona   | N.D.<br>midoacetic Acid.    | 2.6                      | 1                  |
| 14473      | NMeFOSAA¹<br>NMeFOSAA is the acronym for N-meth              | 2355-31-9<br>nyl perfluorooctanesulfo | N.D.<br>onamidoacetic Acid. | 2.6                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                                | 375-73-5                              | 0.83 J                      | 0.86                     | 1                  |
| 14473      | Perfluorodecanoic acid <sup>1</sup>                          | 335-76-2                              | N.D.                        | 1.7                      | 1                  |
| 14473      | Perfluorododecanoic acid1                                    | 307-55-1                              | N.D.                        | 1.7                      | 1                  |
| 14473      | Perfluoroheptanoic acid1                                     | 375-85-9                              | 0.89                        | 0.86                     | 1                  |
| 14473      | Perfluorohexanesulfonic acid1                                | 355-46-4                              | N.D.                        | 1.7                      | 1                  |
| 14473      | Perfluorohexanoic acid1                                      | 307-24-4                              | 1.6 J                       | 1.7                      | 1                  |
| 14473      | Perfluorononanoic acid1                                      | 375-95-1                              | 0.55 J                      | 1.7                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                                | 1763-23-1                             | 2.0                         | 1.7                      | 1                  |
| 14473      | Perfluorooctanoic acid1                                      | 335-67-1                              | 3.2                         | 0.86                     | 1                  |
| 14473      | Perfluorotetradecanoic acid1                                 | 376-06-7                              | N.D.                        | 0.86                     | 1                  |
| 14473      | Perfluorotridecanoic acid <sup>1</sup>                       | 72629-94-8                            | N.D.                        | 0.86                     | 1                  |
| 14473      | Perfluoroundecanoic acid1                                    | 2058-94-8                             | N.D.                        | 1.7                      | 1                  |

### **Sample Comments**

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

|            | Laboratory Sample Analysis Record |                                 |        |          |                           |                     |                    |  |  |  |  |
|------------|-----------------------------------|---------------------------------|--------|----------|---------------------------|---------------------|--------------------|--|--|--|--|
| CAT<br>No. | Analysis Name                     | Method                          | Trial# | Batch#   | Analysis<br>Date and Time | Analyst             | Dilution<br>Factor |  |  |  |  |
| 14473      | 14 PFAS                           | EPA 537 Version 1.1 Modified    | 1      | 19151009 | 06/05/2019 00:42          | Jason W Knight      | 1                  |  |  |  |  |
| 14091      | PFAS Water Prep                   | EPA 537 Version 1.1<br>Modified | 1      | 19151009 | 05/31/2019 16:30          | Isaac Phillips-Cary | 1                  |  |  |  |  |

1

GW 1067734

2046067

**TestAmerica ELLE Sample #:** 

**ELLE Group #:** 

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: **OC-GW-32D-XXX Groundwater** 

**Olin Wilmington** 

**Olin Wilmington Project Name:** 

Submittal Date/Time: 05/29/2019 10:20 Collection Date/Time: 05/28/2019 15:05

Perfluorotridecanoic acid1

Perfluoroundecanoic acid1

14473

14473

| SDG#:      | TA                                              | .018-04                                           |                             |                          |                    |
|------------|-------------------------------------------------|---------------------------------------------------|-----------------------------|--------------------------|--------------------|
| CAT<br>No. | Analysis Name                                   | CAS Number                                        | Result                      | Limit of<br>Quantitation | Dilution<br>Factor |
| LC/MS      | /MS Miscellaneous                               | EPA 537 Version 1.1<br>Modified                   | ng/l                        | ng/l                     |                    |
| 14473      | NEtFOSAA¹<br>NEtFOSAA is the acronyi            | 2991-50-6<br>m for N-ethyl perfluorooctanesulfona | 1.8 J<br>amidoacetic Acid.  | 2.7                      | 1                  |
| 14473      | NMeFOSAA <sup>1</sup><br>NMeFOSAA is the acrony | 2355-31-9<br>ym for N-methyl perfluorooctanesulf  | N.D.<br>onamidoacetic Acid. | 2.7                      | 1                  |
| 14473      | Perfluorobutanesulfonic a                       | acid¹ 375-73-5                                    | 0.87 J                      | 0.90                     | 1                  |
| 14473      | Perfluorodecanoic acid1                         | 335-76-2                                          | N.D.                        | 1.8                      | 1                  |
| 14473      | Perfluorododecanoic acid                        | <sup>1</sup> 307-55-1                             | N.D.                        | 1.8                      | 1                  |
| 14473      | Perfluoroheptanoic acid1                        | 375-85-9                                          | 1.4                         | 0.90                     | 1                  |
| 14473      | Perfluorohexanesulfonic                         | acid <sup>1</sup> 355-46-4                        | 0.65 J                      | 1.8                      | 1                  |
| 14473      | Perfluorohexanoic acid1                         | 307-24-4                                          | 1.8 J                       | 1.8                      | 1                  |
| 14473      | Perfluorononanoic acid1                         | 375-95-1                                          | 0.97 J                      | 1.8                      | 1                  |
| 14473      | Perfluorooctanesulfonic a                       | acid¹ 1763-23-1                                   | 8.1                         | 1.8                      | 1                  |
| 14473      | Perfluorooctanoic acid1                         | 335-67-1                                          | 5.0                         | 0.90                     | 1                  |
| 14473      | Perfluorotetradecanoic ad                       | cid <sup>1</sup> 376-06-7                         | N.D.                        | 0.90                     | 1                  |

### **Sample Comments**

0.90

1.8

N.D.

N.D.

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

72629-94-8

2058-94-8

#### **Laboratory Sample Analysis Record** Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution No. **Date and Time** Factor 14 PFAS EPA 537 Version 1.1 19151009 06/05/2019 01:00 Jason W Knight 14473 Modified EPA 537 Version 1.1 PFAS Water Prep 19151009 05/31/2019 16:30 Isaac Phillips-Cary 1 14091 Modified

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

GW 1067735

2046067

**TestAmerica** 

ELLE Sample #:

Matrix: Groundwater

**ELLE Group #:** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-GW-32S-XXX Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

Submittal Date/Time: 05/29/2019 10:20 Collection Date/Time: 05/28/2019 15:55

SDG#: TAO18-05

| CAT<br>No. | Analysis Name                                            | CAS Number                             | Result                      | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|----------------------------------------------------------|----------------------------------------|-----------------------------|--------------------------|--------------------|
| LC/MS      | MS Miscellaneous EPA 53 Modifie                          | 7 Version 1.1                          | ng/l                        | ng/l                     |                    |
| 14473      | NEtFOSAA <sup>1</sup> NEtFOSAA is the acronym for N-ethy | 2991-50-6<br>I perfluorooctanesulfona  | N.D.<br>midoacetic Acid.    | 2.7                      | 1                  |
| 14473      | NMeFOSAA <sup>1</sup> NMeFOSAA is the acronym for N-me   | 2355-31-9<br>thyl perfluorooctanesulfo | N.D.<br>onamidoacetic Acid. | 2.7                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                            | 375-73-5                               | N.D.                        | 0.91                     | 1                  |
| 14473      | Perfluorodecanoic acid1                                  | 335-76-2                               | N.D.                        | 1.8                      | 1                  |
| 14473      | Perfluorododecanoic acid1                                | 307-55-1                               | N.D.                        | 1.8                      | 1                  |
| 14473      | Perfluoroheptanoic acid1                                 | 375-85-9                               | 0.45 J                      | 0.91                     | 1                  |
| 14473      | Perfluorohexanesulfonic acid1                            | 355-46-4                               | N.D.                        | 1.8                      | 1                  |
| 14473      | Perfluorohexanoic acid1                                  | 307-24-4                               | N.D.                        | 1.8                      | 1                  |
| 14473      | Perfluorononanoic acid1                                  | 375-95-1                               | N.D.                        | 1.8                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                            | 1763-23-1                              | 0.51 J                      | 1.8                      | 1                  |
| 14473      | Perfluorooctanoic acid1                                  | 335-67-1                               | 1.7                         | 0.91                     | 1                  |
| 14473      | Perfluorotetradecanoic acid1                             | 376-06-7                               | N.D.                        | 0.91                     | 1                  |
| 14473      | Perfluorotridecanoic acid1                               | 72629-94-8                             | N.D.                        | 0.91                     | 1                  |
| 14473      | Perfluoroundecanoic acid1                                | 2058-94-8                              | N.D.                        | 1.8                      | 1                  |

### **Sample Comments**

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

|            | Laboratory Sample Analysis Record |                                 |        |          |                           |                     |                    |
|------------|-----------------------------------|---------------------------------|--------|----------|---------------------------|---------------------|--------------------|
| CAT<br>No. | Analysis Name                     | Method                          | Trial# | Batch#   | Analysis<br>Date and Time | Analyst             | Dilution<br>Factor |
| 14473      | 14 PFAS                           | EPA 537 Version 1.1 Modified    | 1      | 19151009 | 06/05/2019 01:09          | Jason W Knight      | 1                  |
| 14091      | PFAS Water Prep                   | EPA 537 Version 1.1<br>Modified | 1      | 19151009 | 05/31/2019 16:30          | Isaac Phillips-Cary | 1                  |

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-GW-54D-DUP Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

Submittal Date/Time: 05/29/2019 10:20
Collection Date/Time: 05/28/2019 13:30
SDG#: TAO18-06FD

**TestAmerica** 

ELLE Sample #: GW 1067736 ELLE Group #: 2046067

Matrix: Groundwater

| CAT<br>No. | Analysis Name                                           | CAS Number                            | Result                     | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|---------------------------------------------------------|---------------------------------------|----------------------------|--------------------------|--------------------|
| LC/MS      | MS Miscellaneous EPA 537                                | Version 1.1                           | ng/l                       | ng/l                     |                    |
| 14473      | NEtFOSAA¹<br>NEtFOSAA is the acronym for N-ethyl        | 2991-50-6<br>perfluorooctanesulfonal  | N.D.<br>midoacetic Acid.   | 2.7                      | 1                  |
| 14473      | NMeFOSAA <sup>1</sup> NMeFOSAA is the acronym for N-met | 2355-31-9<br>hyl perfluorooctanesulfo | N.D.<br>namidoacetic Acid. | 2.7                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                           | 375-73-5                              | 0.49 J                     | 0.89                     | 1                  |
| 14473      | Perfluorodecanoic acid1                                 | 335-76-2                              | N.D.                       | 1.8                      | 1                  |
| 14473      | Perfluorododecanoic acid1                               | 307-55-1                              | N.D.                       | 1.8                      | 1                  |
| 14473      | Perfluoroheptanoic acid1                                | 375-85-9                              | 1.1                        | 0.89                     | 1                  |
| 14473      | Perfluorohexanesulfonic acid1                           | 355-46-4                              | N.D.                       | 1.8                      | 1                  |
| 14473      | Perfluorohexanoic acid1                                 | 307-24-4                              | 1.8 J                      | 1.8                      | 1                  |
| 14473      | Perfluorononanoic acid1                                 | 375-95-1                              | 1.0 J                      | 1.8                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                           | 1763-23-1                             | 1.5 J                      | 1.8                      | 1                  |
| 14473      | Perfluorooctanoic acid1                                 | 335-67-1                              | 2.2                        | 0.89                     | 1                  |
| 14473      | Perfluorotetradecanoic acid1                            | 376-06-7                              | N.D.                       | 0.89                     | 1                  |
| 14473      | Perfluorotridecanoic acid1                              | 72629-94-8                            | N.D.                       | 0.89                     | 1                  |
| 14473      | Perfluoroundecanoic acid1                               | 2058-94-8                             | N.D.                       | 1.8                      | 1                  |

### **Sample Comments**

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

|            | Laboratory Sample Analysis Record |                                 |        |          |                           |                     |                    |
|------------|-----------------------------------|---------------------------------|--------|----------|---------------------------|---------------------|--------------------|
| CAT<br>No. | Analysis Name                     | Method                          | Trial# | Batch#   | Analysis<br>Date and Time | Analyst             | Dilution<br>Factor |
| 14473      | 14 PFAS                           | EPA 537 Version 1.1 Modified    | 1      | 19151009 | 06/05/2019 01:18          | Jason W Knight      | 1                  |
| 14091      | PFAS Water Prep                   | EPA 537 Version 1.1<br>Modified | 1      | 19151009 | 05/31/2019 16:30          | Isaac Phillips-Cary | 1                  |

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-GW-54D-XXX Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

Submittal Date/Time: 05/29/2019 10:20
Collection Date/Time: 05/28/2019 13:30
SDG#: TAO18-07BKG

**TestAmerica** 

ELLE Sample #: GW 1067737 ELLE Group #: 2046067

Matrix: Groundwater

| CAT<br>No. | Analysis Name                                                | CAS Number                            | Result                     | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|--------------------------------------------------------------|---------------------------------------|----------------------------|--------------------------|--------------------|
| LC/MS      | /MS Miscellaneous EPA 537<br>Modified                        | Version 1.1                           | ng/l                       | ng/l                     |                    |
| 14473      | NEtFOSAA <sup>1</sup><br>NEtFOSAA is the acronym for N-ethyl | 2991-50-6<br>perfluorooctanesulfonal  | N.D.<br>midoacetic Acid.   | 2.7                      | 1                  |
| 14473      | NMeFOSAA¹<br>NMeFOSAA is the acronym for N-met               | 2355-31-9<br>hyl perfluorooctanesulfo | N.D.<br>namidoacetic Acid. | 2.7                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                                | 375-73-5                              | 0.54 J                     | 0.89                     | 1                  |
| 14473      | Perfluorodecanoic acid1                                      | 335-76-2                              | N.D.                       | 1.8                      | 1                  |
| 14473      | Perfluorododecanoic acid1                                    | 307-55-1                              | N.D.                       | 1.8                      | 1                  |
| 14473      | Perfluoroheptanoic acid <sup>1</sup>                         | 375-85-9                              | 1.1                        | 0.89                     | 1                  |
| 14473      | Perfluorohexanesulfonic acid¹                                | 355-46-4                              | N.D.                       | 1.8                      | 1                  |
| 14473      | Perfluorohexanoic acid1                                      | 307-24-4                              | 1.7 J                      | 1.8                      | 1                  |
| 14473      | Perfluorononanoic acid1                                      | 375-95-1                              | 1.1 J                      | 1.8                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                                | 1763-23-1                             | 1.6 J                      | 1.8                      | 1                  |
| 14473      | Perfluorooctanoic acid1                                      | 335-67-1                              | 2.4                        | 0.89                     | 1                  |
| 14473      | Perfluorotetradecanoic acid1                                 | 376-06-7                              | N.D.                       | 0.89                     | 1                  |
| 14473      | Perfluorotridecanoic acid1                                   | 72629-94-8                            | N.D.                       | 0.89                     | 1                  |
| 14473      | Perfluoroundecanoic acid1                                    | 2058-94-8                             | N.D.                       | 1.8                      | 1                  |

### **Sample Comments**

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

|            | Laboratory Sample Analysis Record |                                 |        |          |                           |                     |                    |
|------------|-----------------------------------|---------------------------------|--------|----------|---------------------------|---------------------|--------------------|
| CAT<br>No. | Analysis Name                     | Method                          | Trial# | Batch#   | Analysis<br>Date and Time | Analyst             | Dilution<br>Factor |
| 14473      | 14 PFAS                           | EPA 537 Version 1.1 Modified    | 1      | 19151009 | 06/05/2019 01:27          | Jason W Knight      | 1                  |
| 14091      | PFAS Water Prep                   | EPA 537 Version 1.1<br>Modified | 1      | 19151009 | 05/31/2019 16:30          | Isaac Phillips-Cary | 1                  |

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-GW-54D-MS Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

Submittal Date/Time: 05/29/2019 10:20
Collection Date/Time: 05/28/2019 13:30
SDG#: TAO18-07MS

**TestAmerica** 

ELLE Sample #: GW 1067738 ELLE Group #: 2046067

Matrix: Groundwater

| CAT<br>No. | Analysis Name                                                | CAS Number                            | Result                     | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|--------------------------------------------------------------|---------------------------------------|----------------------------|--------------------------|--------------------|
| LC/MS      | /MS Miscellaneous EPA 537<br>Modified                        | 7 Version 1.1<br>d                    | ng/l                       | ng/l                     |                    |
| 14473      | NEtFOSAA <sup>1</sup><br>NEtFOSAA is the acronym for N-ethyl | 2991-50-6<br>perfluorooctanesulfona   | 6.1<br>midoacetic Acid.    | 2.7                      | 1                  |
| 14473      | NMeFOSAA¹<br>NMeFOSAA is the acronym for N-met               | 2355-31-9<br>hyl perfluorooctanesulfo | 5.5<br>onamidoacetic Acid. | 2.7                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                                | 375-73-5                              | 6.2                        | 0.89                     | 1                  |
| 14473      | Perfluorodecanoic acid1                                      | 335-76-2                              | 5.9                        | 1.8                      | 1                  |
| 14473      | Perfluorododecanoic acid1                                    | 307-55-1                              | 6.7                        | 1.8                      | 1                  |
| 14473      | Perfluoroheptanoic acid1                                     | 375-85-9                              | 8.0                        | 0.89                     | 1                  |
| 14473      | Perfluorohexanesulfonic acid1                                | 355-46-4                              | 5.9                        | 1.8                      | 1                  |
| 14473      | Perfluorohexanoic acid1                                      | 307-24-4                              | 8.7                        | 1.8                      | 1                  |
| 14473      | Perfluorononanoic acid1                                      | 375-95-1                              | 7.9                        | 1.8                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                                | 1763-23-1                             | 6.6                        | 1.8                      | 1                  |
| 14473      | Perfluorooctanoic acid1                                      | 335-67-1                              | 9.1                        | 0.89                     | 1                  |
| 14473      | Perfluorotetradecanoic acid1                                 | 376-06-7                              | 7.0                        | 0.89                     | 1                  |
| 14473      | Perfluorotridecanoic acid <sup>1</sup>                       | 72629-94-8                            | 6.5                        | 0.89                     | 1                  |
| 14473      | Perfluoroundecanoic acid <sup>1</sup>                        | 2058-94-8                             | 6.6                        | 1.8                      | 1                  |

### **Sample Comments**

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

#### **Laboratory Sample Analysis Record** Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution Date and Time No. Factor EPA 537 Version 1.1 14473 14 PFAS 19151009 06/05/2019 01:36 Jason W Knight Modified EPA 537 Version 1.1 PFAS Water Prep 19151009 05/31/2019 16:30 Isaac Phillips-Cary 1 14091 Modified

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-GW-54D-MSD Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

Submittal Date/Time: 05/29/2019 10:20
Collection Date/Time: 05/28/2019 13:30
SDG#: TAO18-07MSD

**TestAmerica** 

ELLE Sample #: GW 1067739 ELLE Group #: 2046067

Matrix: Groundwater

| CAT<br>No. | Analysis Name                                                 | CAS Number                        | Result                    | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|---------------------------------------------------------------|-----------------------------------|---------------------------|--------------------------|--------------------|
| LC/MS      | /MS Miscellaneous EPA 537 V<br>Modified                       | ersion 1.1                        | ng/l                      | ng/l                     |                    |
| 14473      | NEtFOSAA <sup>1</sup> NEtFOSAA is the acronym for N-ethyl pe  | 2991-50-6<br>rfluorooctanesulfona | 6.1<br>midoacetic Acid.   | 2.7                      | 1                  |
| 14473      | NMeFOSAA <sup>1</sup><br>NMeFOSAA is the acronym for N-methyl | 2355-31-9<br>perfluorooctanesulfo | 6.6<br>namidoacetic Acid. | 2.7                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                                 | 375-73-5                          | 6.1                       | 0.90                     | 1                  |
| 14473      | Perfluorodecanoic acid <sup>1</sup>                           | 335-76-2                          | 6.8                       | 1.8                      | 1                  |
| 14473      | Perfluorododecanoic acid <sup>1</sup>                         | 307-55-1                          | 6.9                       | 1.8                      | 1                  |
| 14473      | Perfluoroheptanoic acid <sup>1</sup>                          | 375-85-9                          | 8.2                       | 0.90                     | 1                  |
| 14473      | Perfluorohexanesulfonic acid <sup>1</sup>                     | 355-46-4                          | 6.4                       | 1.8                      | 1                  |
| 14473      | Perfluorohexanoic acid <sup>1</sup>                           | 307-24-4                          | 8.3                       | 1.8                      | 1                  |
| 14473      | Perfluorononanoic acid1                                       | 375-95-1                          | 8.1                       | 1.8                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                                 | 1763-23-1                         | 6.6                       | 1.8                      | 1                  |
| 14473      | Perfluorooctanoic acid1                                       | 335-67-1                          | 9.3                       | 0.90                     | 1                  |
| 14473      | Perfluorotetradecanoic acid1                                  | 376-06-7                          | 6.5                       | 0.90                     | 1                  |
| 14473      | Perfluorotridecanoic acid1                                    | 72629-94-8                        | 6.8                       | 0.90                     | 1                  |
| 14473      | Perfluoroundecanoic acid <sup>1</sup>                         | 2058-94-8                         | 6.3                       | 1.8                      | 1                  |

### **Sample Comments**

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

|            | Laboratory Sample Analysis Record |                                 |        |          |                           |                     |                    |
|------------|-----------------------------------|---------------------------------|--------|----------|---------------------------|---------------------|--------------------|
| CAT<br>No. | Analysis Name                     | Method                          | Trial# | Batch#   | Analysis<br>Date and Time | Analyst             | Dilution<br>Factor |
| 14473      | 14 PFAS                           | EPA 537 Version 1.1 Modified    | 1      | 19151009 | 06/05/2019 01:45          | Jason W Knight      | 1                  |
| 14091      | PFAS Water Prep                   | EPA 537 Version 1.1<br>Modified | 1      | 19151009 | 05/31/2019 16:30          | Isaac Phillips-Cary | 1                  |

GW 1067740

2046067

TestAmerica ELLE Sample #:

**ELLE Group #:** 

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-BR-1-XXX Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

Submittal Date/Time: 05/29/2019 10:20 Collection Date/Time: 05/28/2019 17:30

SDG#: TAO18-08

| CAT<br>No. | Analysis Name                                                | CAS Number                            | Result                     | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|--------------------------------------------------------------|---------------------------------------|----------------------------|--------------------------|--------------------|
| LC/MS      | /MS Miscellaneous EPA 537<br>Modified                        | 7 Version 1.1<br>d                    | ng/l                       | ng/l                     |                    |
| 14473      | NEtFOSAA <sup>1</sup><br>NEtFOSAA is the acronym for N-ethyl | 2991-50-6<br>perfluorooctanesulfonal  | N.D.<br>midoacetic Acid.   | 2.7                      | 1                  |
| 14473      | NMeFOSAA¹<br>NMeFOSAA is the acronym for N-met               | 2355-31-9<br>hyl perfluorooctanesulfo | N.D.<br>namidoacetic Acid. | 2.7                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                                | 375-73-5                              | 0.78 J                     | 0.91                     | 1                  |
| 14473      | Perfluorodecanoic acid <sup>1</sup>                          | 335-76-2                              | N.D.                       | 1.8                      | 1                  |
| 14473      | Perfluorododecanoic acid1                                    | 307-55-1                              | N.D.                       | 1.8                      | 1                  |
| 14473      | Perfluoroheptanoic acid1                                     | 375-85-9                              | 2.1                        | 0.91                     | 1                  |
| 14473      | Perfluorohexanesulfonic acid1                                | 355-46-4                              | 1.1 J                      | 1.8                      | 1                  |
| 14473      | Perfluorohexanoic acid <sup>1</sup>                          | 307-24-4                              | 3.4                        | 1.8                      | 1                  |
| 14473      | Perfluorononanoic acid1                                      | 375-95-1                              | 1.1 J                      | 1.8                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                                | 1763-23-1                             | 6.4                        | 1.8                      | 1                  |
| 14473      | Perfluorooctanoic acid1                                      | 335-67-1                              | 8.4                        | 0.91                     | 1                  |
| 14473      | Perfluorotetradecanoic acid1                                 | 376-06-7                              | N.D.                       | 0.91                     | 1                  |
| 14473      | Perfluorotridecanoic acid <sup>1</sup>                       | 72629-94-8                            | N.D.                       | 0.91                     | 1                  |
| 14473      | Perfluoroundecanoic acid1                                    | 2058-94-8                             | N.D.                       | 1.8                      | 1                  |

### **Sample Comments**

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

#### **Laboratory Sample Analysis Record** Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution Date and Time No. Factor EPA 537 Version 1.1 14473 14 PFAS 19151009 06/05/2019 01:54 Jason W Knight Modified EPA 537 Version 1.1 PFAS Water Prep 1 19151009 05/31/2019 16:30 Isaac Phillips-Cary 1 14091 Modified

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-GW-101-XXX Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

Submittal Date/Time: 05/29/2019 10:20 Collection Date/Time: 05/28/2019 18:13

SDG#: TAO18-09

| restAmerica    |            |
|----------------|------------|
| ELLE Sample #: | GW 1067741 |
| ELLE Group #:  | 2046067    |

ELLE Group #: 20
Matrix: Groundwater

| CAT<br>No. | Analysis Name                                                | CAS Number                         | Result                     | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|--------------------------------------------------------------|------------------------------------|----------------------------|--------------------------|--------------------|
| LC/MS      | /MS Miscellaneous EPA 537 Ve<br>Modified                     | ersion 1.1                         | ng/l                       | ng/l                     |                    |
| 14473      | NEtFOSAA¹<br>NEtFOSAA is the acronym for N-ethyl perf        | 2991-50-6<br>Iuorooctanesulfonan   | N.D.<br>nidoacetic Acid.   | 2.5                      | 1                  |
| 14473      | NMeFOSAA <sup>1</sup> NMeFOSAA is the acronym for N-methyl p | 2355-31-9<br>perfluorooctanesulfor | N.D.<br>namidoacetic Acid. | 2.5                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                                | 375-73-5                           | 0.76 J                     | 0.84                     | 1                  |
| 14473      | Perfluorodecanoic acid1                                      | 335-76-2                           | N.D.                       | 1.7                      | 1                  |
| 14473      | Perfluorododecanoic acid1                                    | 307-55-1                           | N.D.                       | 1.7                      | 1                  |
| 14473      | Perfluoroheptanoic acid1                                     | 375-85-9                           | 2.3                        | 0.84                     | 1                  |
| 14473      | Perfluorohexanesulfonic acid1                                | 355-46-4                           | N.D.                       | 1.7                      | 1                  |
| 14473      | Perfluorohexanoic acid1                                      | 307-24-4                           | 5.3                        | 1.7                      | 1                  |
| 14473      | Perfluorononanoic acid1                                      | 375-95-1                           | 1.3 J                      | 1.7                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                                | 1763-23-1                          | 5.1                        | 1.7                      | 1                  |
| 14473      | Perfluorooctanoic acid1                                      | 335-67-1                           | 5.2                        | 0.84                     | 1                  |
| 14473      | Perfluorotetradecanoic acid1                                 | 376-06-7                           | N.D.                       | 0.84                     | 1                  |
| 14473      | Perfluorotridecanoic acid1                                   | 72629-94-8                         | N.D.                       | 0.84                     | 1                  |
| 14473      | Perfluoroundecanoic acid <sup>1</sup>                        | 2058-94-8                          | N.D.                       | 1.7                      | 1                  |

### **Sample Comments**

 $<sup>^{1}</sup>$  = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

|            | Laboratory Sample Analysis Record |                                 |        |          |                           |                     |                    |
|------------|-----------------------------------|---------------------------------|--------|----------|---------------------------|---------------------|--------------------|
| CAT<br>No. | Analysis Name                     | Method                          | Trial# | Batch#   | Analysis<br>Date and Time | Analyst             | Dilution<br>Factor |
| 14473      | 14 PFAS                           | EPA 537 Version 1.1 Modified    | 1      | 19151009 | 06/05/2019 02:03          | Jason W Knight      | 1                  |
| 14091      | PFAS Water Prep                   | EPA 537 Version 1.1<br>Modified | 1      | 19151009 | 05/31/2019 16:30          | Isaac Phillips-Cary | 1                  |

### **Quality Control Summary**

Client Name: TestAmerica Group Number: 2046067

Reported: 06/07/2019 15:28

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

### **Method Blank**

| Analysis Name                | Result      | LOQ                    |   |
|------------------------------|-------------|------------------------|---|
|                              | ng/l        | ng/l                   |   |
| Batch number: 19151009       | Sample numb | oer(s): 1067731-106774 | 1 |
| NEtFOSAA                     | N.D.        | 3.0                    |   |
| NMeFOSAA                     | N.D.        | 3.0                    |   |
| Perfluorobutanesulfonic acid | N.D.        | 1.0                    |   |
| Perfluorodecanoic acid       | N.D.        | 2.0                    |   |
| Perfluorododecanoic acid     | N.D.        | 2.0                    |   |
| Perfluoroheptanoic acid      | N.D.        | 1.0                    |   |
| Perfluorohexanesulfonic acid | N.D.        | 2.0                    |   |
| Perfluorohexanoic acid       | N.D.        | 2.0                    |   |
| Perfluorononanoic acid       | N.D.        | 2.0                    |   |
| Perfluorooctanesulfonic acid | N.D.        | 2.0                    |   |
| Perfluorooctanoic acid       | N.D.        | 1.0                    |   |
| Perfluorotetradecanoic acid  | N.D.        | 1.0                    |   |
| Perfluorotridecanoic acid    | N.D.        | 1.0                    |   |
| Perfluoroundecanoic acid     | N.D.        | 2.0                    |   |

#### LCS/LCSD

| Analysis Name                | LCS Spike<br>Added<br>ng/l | LCS<br>Conc<br>ng/l | LCSD Spike<br>Added<br>ng/l | LCSD<br>Conc<br>ng/l | LCS<br>%REC | LCSD<br>%REC | LCS/LCSD<br>Limits | RPD | RPD<br>Max |
|------------------------------|----------------------------|---------------------|-----------------------------|----------------------|-------------|--------------|--------------------|-----|------------|
| Batch number: 19151009       | Sample number(             | s): 1067731-1       | 1067741                     |                      |             |              |                    |     |            |
| NEtFOSAA                     | 5.44                       | 5.32                |                             |                      | 98          |              | 55-169             |     |            |
| NMeFOSAA                     | 5.44                       | 5.21                |                             |                      | 96          |              | 44-147             |     |            |
| Perfluorobutanesulfonic acid | 4.81                       | 4.75                |                             |                      | 99          |              | 73-128             |     |            |
| Perfluorodecanoic acid       | 5.44                       | 5.09                |                             |                      | 94          |              | 69-148             |     |            |
| Perfluorododecanoic acid     | 5.44                       | 5.50                |                             |                      | 101         |              | 75-136             |     |            |
| Perfluoroheptanoic acid      | 5.44                       | 5.89                |                             |                      | 108         |              | 76-140             |     |            |
| Perfluorohexanesulfonic acid | 5.14                       | 4.95                |                             |                      | 96          |              | 71-131             |     |            |
| Perfluorohexanoic acid       | 5.44                       | 6.07                |                             |                      | 112         |              | 75-135             |     |            |
| Perfluorononanoic acid       | 5.44                       | 5.54                |                             |                      | 102         |              | 72-148             |     |            |
| Perfluorooctanesulfonic acid | 5.20                       | 4.76                |                             |                      | 92          |              | 67-138             |     |            |
| Perfluorooctanoic acid       | 5.44                       | 5.53                |                             |                      | 102         |              | 72-138             |     |            |
| Perfluorotetradecanoic acid  | 5.44                       | 4.79                |                             |                      | 88          |              | 74-135             |     |            |
| Perfluorotridecanoic acid    | 5.44                       | 5.70                |                             |                      | 105         |              | 61-145             |     |            |
| Perfluoroundecanoic acid     | 5.44                       | 5.38                |                             |                      | 99          |              | 75-146             |     |            |

<sup>\*-</sup> Outside of specification

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The unspiked result was more than four times the spike added.

### **Quality Control Summary**

Client Name: TestAmerica Group Number: 2046067

Reported: 06/07/2019 15:28

#### MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

| Analysis Name                | Unspiked<br>Conc<br>ng/l | MS Spike<br>Added<br>ng/l | MS<br>Conc<br>ng/l | MSD Spike<br>Added<br>ng/l | MSD<br>Conc<br>ng/l | MS<br>%Rec | MSD<br>%Rec | MS/MSD<br>Limits | RPD | RPD<br>Max |
|------------------------------|--------------------------|---------------------------|--------------------|----------------------------|---------------------|------------|-------------|------------------|-----|------------|
| Batch number: 19151009       | Sample number            | er(s): 1067731-           | 1067741 U          | INSPK: 1067737             |                     |            |             |                  |     |            |
| NEtFOSAA                     | N.D.                     | 4.85                      | 6.13               | 4.89                       | 6.15                | 127        | 126         | 49-159           | 0   | 30         |
| NMeFOSAA                     | N.D.                     | 4.85                      | 5.46               | 4.89                       | 6.57                | 113        | 134         | 58-157           | 19  | 30         |
| Perfluorobutanesulfonic acid | 0.536                    | 4.29                      | 6.23               | 4.33                       | 6.09                | 133        | 128         | 73-134           | 2   | 30         |
| Perfluorodecanoic acid       | N.D.                     | 4.85                      | 5.88               | 4.89                       | 6.76                | 121        | 138         | 73-142           | 14  | 30         |
| Perfluorododecanoic acid     | N.D.                     | 4.85                      | 6.74               | 4.89                       | 6.87                | 139*       | 140*        | 76-136           | 2   | 30         |
| Perfluoroheptanoic acid      | 1.11                     | 4.85                      | 7.96               | 4.89                       | 8.17                | 141*       | 144*        | 67-137           | 3   | 30         |
| Perfluorohexanesulfonic acid | N.D.                     | 4.58                      | 5.93               | 4.63                       | 6.43                | 129        | 139*        | 73-129           | 8   | 30         |
| Perfluorohexanoic acid       | 1.74                     | 4.85                      | 8.74               | 4.89                       | 8.34                | 144*       | 135*        | 70-130           | 5   | 30         |
| Perfluorononanoic acid       | 1.08                     | 4.85                      | 7.95               | 4.89                       | 8.11                | 142*       | 144*        | 70-130           | 2   | 30         |
| Perfluorooctanesulfonic acid | 1.56                     | 4.63                      | 6.63               | 4.68                       | 6.63                | 109        | 108         | 48-154           | 0   | 30         |
| Perfluorooctanoic acid       | 2.43                     | 4.85                      | 9.06               | 4.89                       | 9.33                | 137        | 141         | 48-160           | 3   | 30         |
| Perfluorotetradecanoic acid  | N.D.                     | 4.85                      | 7.04               | 4.89                       | 6.50                | 145*       | 133         | 78-133           | 8   | 30         |
| Perfluorotridecanoic acid    | N.D.                     | 4.85                      | 6.52               | 4.89                       | 6.77                | 135        | 138         | 57-151           | 4   | 30         |
| Perfluoroundecanoic acid     | N.D.                     | 4.85                      | 6.55               | 4.89                       | 6.32                | 135        | 129         | 66-137           | 4   | 30         |

### **Labeled Isotope Quality Control**

Labeled isotope recoveries which are outside of the QC window are confirmed unless otherwise noted on the analysis report.

Analysis Name: 14 PFAS Batch number: 19151009

|         | 13C3-PFBS | 13C5-PFHxA | 13C3-PFHxS | 13C4-PFHpA | 13C8-PFOA | 13C8-PFOS |  |
|---------|-----------|------------|------------|------------|-----------|-----------|--|
| 1067731 | 89        | 87         | 87         | 87         | 91        | 90        |  |
| 1067732 | 111       | 72         | 84         | 75         | 79        | 81        |  |
| 1067733 | 107       | 88         | 102        | 93         | 84        | 80        |  |
| 1067734 | 108       | 89         | 100        | 91         | 94        | 88        |  |
| 1067735 | 105       | 89         | 93         | 89         | 88        | 90        |  |
| 1067736 | 102       | 84         | 101        | 84         | 85        | 86        |  |
| 1067737 | 110       | 94         | 106        | 88         | 87        | 91        |  |
| 1067738 | 100       | 93         | 102        | 84         | 88        | 85        |  |
| 1067739 | 108       | 94         | 105        | 87         | 90        | 94        |  |
| 1067740 | 103       | 84         | 87         | 75         | 88        | 95        |  |
| 1067741 | 98        | 82         | 91         | 80         | 80        | 79        |  |
| Blank   | 82        | 81         | 82         | 86         | 85        | 82        |  |
| LCS     | 82        | 88         | 85         | 87         | 87        | 88        |  |
| MS      | 100       | 93         | 102        | 84         | 88        | 85        |  |

<sup>\*-</sup> Outside of specification

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The unspiked result was more than four times the spike added.

### **Quality Control Summary**

Client Name: TestAmerica Group Number: 2046067 Reported: 06/07/2019 15:28

### **Labeled Isotope Quality Control**

Labeled isotope recoveries which are outside of the QC window are confirmed unless otherwise noted on the analysis report.

Analysis Name: 14 PFAS Batch number: 19151009

|         | 13C3-PFBS | 13C5-PFHxA | 13C3-PFHxS  | 13C4-PFHpA  | 13C8-PFOA   | 13C8-PFOS   |
|---------|-----------|------------|-------------|-------------|-------------|-------------|
| MSD     | 108       | 94         | 105         | 87          | 90          | 94          |
| Limits: | 26-148    | 35-138     | 34-126      | 35-126      | 48-122      | 50-121      |
|         | 13C9-PFNA | 13C6-PFDA  | d3-NMeFOSAA | 13C7-PFUnDA | d5-NEtFOSAA | 13C2-PFDoDA |
| 1067731 | 90        | 94         | 106         | 95          | 102         | 91          |
| 1067732 | 79        | 84         | 97          | 94          | 94          | 87          |
| 1067733 | 74        | 87         | 101         | 103         | 97          | 104         |
| 1067734 | 87        | 81         | 93          | 93          | 103         | 96          |
| 1067735 | 88        | 90         | 95          | 87          | 84          | 83          |
| 1067736 | 78        | 85         | 117         | 111         | 112         | 106         |
| 1067737 | 84        | 91         | 124         | 117         | 121         | 111         |
| 1067738 | 83        | 96         | 108         | 110         | 108         | 106         |
| 1067739 | 81        | 89         | 111         | 125         | 127         | 108         |
| 1067740 | 90        | 91         | 94          | 91          | 104         | 88          |
| 1067741 | 68        | 77         | 95          | 104         | 98          | 104         |
| Blank   | 82        | 85         | 90          | 89          | 89          | 80          |
| LCS     | 92        | 89         | 88          | 85          | 88          | 78          |
| MS      | 83        | 96         | 108         | 110         | 108         | 106         |
| MSD     | 81        | 89         | 111         | 125         | 127         | 108         |
| Limits: | 41-144    | 47-125     | 30-127      | 30-128      | 30-142      | 39-130      |

|         | 13C2-PFTeDA |
|---------|-------------|
| 1067731 | 93          |
| 1067732 | 78          |
| 1067733 | 114         |
| 1067734 | 93          |
| 1067735 | 88          |
| 1067736 | 102         |
| 1067737 | 112         |
| 1067738 | 106         |
| 1067739 | 120*        |
| 1067740 | 97          |
| 1067741 | 107         |
| Blank   | 86          |
| LCS     | 90          |
| MS      | 106         |
| MSD     | 120*        |
| Limits: | 26-119      |

<sup>\*-</sup> Outside of specification

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The unspiked result was more than four times the spike added.



2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

### **Quality Control Summary**

Client Name: TestAmerica Group Number: 2046067

Reported: 06/07/2019 15:28

<sup>\*-</sup> Outside of specification

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The unspiked result was more than four times the spike added.

## A 01042 6 2046067 | S1067731-741



Wood Environment and Infrastructure, Inc. 511 Congress Street Portland, ME 04101 (207) 775-5401 SHIP TO: Lancaster Lab 2425 New Holland Pike Lancaster, PA 17601 Atten: Lynn Frederiksen Lab Phone# (717) 656-2300

### **CHAIN OF CUSTODY**

DATE: 5/28/2019

COC #: Olin190528A

PAGE: 1 OF 1

| Project Name: Project Number:                                                                                                                                | Olin Wilmington                                                                                                              | Project Contact:<br>Phone Number:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                      | Chris Mazzolini<br>Chris = (339) 927-379                 | e .        | Bill To: TestAmerica          |                    | Disposal Instru<br>Shipment Meth |                                       |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------|----------------------------------------------------------|------------|-------------------------------|--------------------|----------------------------------|---------------------------------------|-----------------|
| Project Manager:                                                                                                                                             | Libby Bowen                                                                                                                  | Project Phase:                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .001.07           | .01 ) 323-0104                                                       | Offits = (335) 827-375                                   | 0          | Release Order must be noted a | in all involces    | Waybill Number                   |                                       |                 |
|                                                                                                                                                              |                                                                                                                              |                                                                       | And a China China San Barbara San Francisco Carlo Carl |                   |                                                                      |                                                          |            |                               |                    |                                  | ,,,,,                                 |                 |
| Sample Information                                                                                                                                           |                                                                                                                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                      |                                                          |            | Methods for Analysis          |                    |                                  | RUSH                                  | ]               |
| No. Sample ID  1 OC-FB-052819 2 OC-GW-15-XXX 3 OC-GW-16R-XXX 4 OC-GW-32D-XXX 5 OC-GW-32S-XXX 6 OC-GW-54D-DUP 7 OC-GW-54D-MS 8 OC-GW-54D-MSD                  | Date & Time Sampled 05/28/19 13:15 05/28/19 15:57 05/28/19 13:47 05/28/19 15:05 05/28/19 13:30 05/28/19 13:30 05/28/19 13:30 | Matrix FB GW GW GW GW GW GW                                           | Sample Type FB N N N FD MS MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CSWSW Z Z Z Z Y Y | X X X X X PFAS (537) Lancaster (2) 250mL HDPE                        |                                                          |            |                               |                    |                                  | X X X X X X X X X X X X X X X X X X X | 2 TOTAL BOTTLES |
| 9 <i>OC-GW-</i> 54D-XXX                                                                                                                                      | 05/28/19 13:30                                                                                                               | GW                                                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                 | X                                                                    |                                                          |            |                               |                    |                                  | x                                     | 2               |
| 10 OC-BR-1-XXX                                                                                                                                               | 05/28/19 17:30                                                                                                               | GW                                                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                 | X                                                                    |                                                          |            |                               |                    |                                  | x                                     | 2               |
| 11 OC-GW-101-XXX                                                                                                                                             | 05/28/19 18:13                                                                                                               | GW                                                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                 | X                                                                    |                                                          |            |                               |                    |                                  | x                                     | 2               |
| 12                                                                                                                                                           |                                                                                                                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                      |                                                          |            |                               |                    |                                  |                                       |                 |
| Sampler's Signature:  Light hours  Relinquished By/Affiliation:  Received By:  FedEx  Received By:  Received By:  Received By:  Relinquished By/Affiliation: | Elizabeth Penta wood -                                                                                                       | Date: 5/28/2019 Date: 5/28/2019 Date: 5/28/2019 Date: 5/28/2019 Date: | Time: 18:30 Time: 18:45 Time: Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | Broken Cor<br>COC seat in<br>Other probl<br>WSDOT co<br>Date contact | match samples:<br>ntainer:<br>ntact:<br>ems:<br>ntacted: | or Lab Use | Y or N<br>Y or N<br>Y or N    |                    | D# REWI0025 f<br>= 48006612      | alysis Reques                         | t               |
| Received By (LAB):                                                                                                                                           | f                                                                                                                            | Date:                                                                 | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>20</u>         |                                                                      |                                                          |            | Deliverables                  | : Level 2, Level 4 | and EQUIS EZ I                   | EDD                                   |                 |



## Sample Administration Receipt Documentation Log

Doc Log ID: 250135

Group Number(s): 2046067

Client: Wood Env.

**Delivery and Receipt Information** 

Delivery Method: Fed Ex Arrival Timestamp: 05/29/2019 10:20

Number of Packages: 1 Number of Projects: 1

**Arrival Condition Summary** 

Shipping Container Sealed: Yes Sample IDs on COC match Containers: Yes

Custody Seal Present: Yes Sample Date/Times match COC: Yes

Custody Seal Intact: Yes VOA Vial Headspace ≥ 6mm: N/A

Samples Chilled: Yes Total Trip Blank Qty: 0

Paperwork Enclosed: Yes Air Quality Samples Present: No

Samples Intact: Yes

Missing Samples: No

Extra Samples: No

Discrepancy in Container Qty on COC: No

Unpacked by Nicole Reiff (25684) at 13:39 on 05/29/2019

**Samples Chilled Details** 

Thermometer Types: DT = Digital (Temp. Bottle) IR = Infrared (Surface Temp) All Temperatures in °C.

 Cooler#
 Thermometer ID
 Corrected Temp
 Therm. Type
 Ice Type
 Ice Present?
 Ice Container
 Elevated Temp?

 1
 DT146
 4.9
 DT
 Wet
 Y
 Bagged
 N



**BMQL** 

ppb

basis

Dry weight

parts per billion

as-received basis.

### **Explanation of Symbols and Abbreviations**

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

|          |                                      |                             | ` '                                                                                                                                                               |
|----------|--------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С        | degrees Celsius                      | MPN                         | Most Probable Number                                                                                                                                              |
| cfu      | colony forming units                 | N.D.                        | non-detect                                                                                                                                                        |
| CP Units | cobalt-chloroplatinate units         | ng                          | nanogram(s)                                                                                                                                                       |
| F        | degrees Fahrenheit                   | NTU                         | nephelometric turbidity units                                                                                                                                     |
| g        | gram(s)                              | pg/L                        | picogram/liter                                                                                                                                                    |
| IU       | International Units                  | RL                          | Reporting Limit                                                                                                                                                   |
| kg       | kilogram(s)                          | TNTC                        | Too Numerous To Count                                                                                                                                             |
| L        | liter(s)                             | μg                          | microgram(s)                                                                                                                                                      |
| lb.      | pound(s)                             | μL                          | microliter(s)                                                                                                                                                     |
| m3       | cubic meter(s)                       | umhos/cm                    | micromhos/cm                                                                                                                                                      |
| meq      | milliequivalents                     | MCL                         | Maximum Contamination Limit                                                                                                                                       |
| mg       | milligram(s)                         |                             |                                                                                                                                                                   |
| <        | less than                            |                             |                                                                                                                                                                   |
| >        | greater than                         |                             |                                                                                                                                                                   |
| ppm      | aqueous liquids, ppm is usually take | n to be equivalent to milli | kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight juivalent to one microliter per liter of gas. |

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.



### **Data Qualifiers**

| Qualifier      | Definition                                                                                                 |
|----------------|------------------------------------------------------------------------------------------------------------|
| С              | Result confirmed by reanalysis                                                                             |
| D1             | Indicates for dual column analyses that the result is reported from column 1                               |
| D2             | Indicates for dual column analyses that the result is reported from column 2                               |
| E              | Concentration exceeds the calibration range                                                                |
| K1             | Initial Calibration Blank is above the QC limit and the sample result is ND                                |
| K2             | Continuing Calibration Blank is above the QC limit and the sample result is ND                             |
| K3             | Initial Calibration Verification is above the QC limit and the sample result is ND                         |
| K4             | Continuing Calibration Verification is above the QC limit and the sample result is ND                      |
| J (or G, I, X) | Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)      |
| Р              | Concentration difference between the primary and confirmation column >40%. The lower result is reported.   |
| P^             | Concentration difference between the primary and confirmation column > 40%. The higher result is reported. |
| U              | Analyte was not detected at the value indicated                                                            |
| V              | Concentration difference between the primary and confirmation column >100%. The reporting limit is raised  |
|                | due to this disparity and evident interference.                                                            |
| W              | The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.                              |
| Z              | Laboratory Defined - see analysis report                                                                   |

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.









#### **ANALYSIS REPORT**

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

TestAmerica 501 Southampton Road Suite C Westfield MA 01085

Report Date: June 12, 2019 11:59

**Project: Olin Wilmington** 

Account #: 01042 Group Number: 2046391 SDG: TAO18 PO Number: 48006612 State of Sample Origin: MA

| Electronic Copy To | Olin Chemicals   | Attn: James Cashwell       |
|--------------------|------------------|----------------------------|
| Electronic Copy To | Olin Corporation | Attn: Chinny Esakkiperumal |
| Electronic Copy To | Wood PLC         | Attn: Binks Colby-George   |
| Electronic Copy To | Wood PLC         | Attn: Tige Cunningham      |
| Electronic Copy To | Wood PLC         | Attn: Chris Ricardi        |
| Electronic Copy To | Wood PLC         | Attn: Karen Savage         |
| Electronic Copy To | Wood PLC         | Attn: Peter Thompson       |
| Electronic Copy To | Wood PLC         | Attn: Chris Mazzolini      |
| Electronic Copy To | Wood             | Attn: Elizabeth Penta      |
| Electronic Copy To | Wood PLC         | Attn: Libby Bowen          |

Respectfully Submitted,

Lynn M. Frederiksen

Principal Specialist Group Leader

Lyn M. Frederiksen

(717) 556-7255

To view our laboratory's current scopes of accreditation please go to <a href="https://www.eurofinsus.com/environment-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/">https://www.eurofinsus.com/environmental-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/</a>. Historical copies may be requested through your project manager.



### Lancaster Laboratories Environmental







2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

### **SAMPLE INFORMATION**

| Client Sample Description  | Sample Collection | ELLE#   |
|----------------------------|-------------------|---------|
|                            | <u>Date/Time</u>  |         |
| OC-GW-10DR-XXX Groundwater | 05/29/2019 14:20  | 1069020 |
| OC-GW-305-XXX Groundwater  | 05/29/2019 10:14  | 1069021 |
| OC-GW-307-XXX Groundwater  | 05/29/2019 13:18  | 1069022 |
| OC-MP-1#14-XXX Groundwater | 05/29/2019 09:05  | 1069023 |
| OC-MP-1#1-XXX Groundwater  | 05/29/2019 11:30  | 1069024 |
| OC-MP-1#4-XXX Groundwater  | 05/29/2019 10:20  | 1069025 |

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.



### Lancaster Laboratories Environmental







2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

### MADEP MCP Analytical Method Report Certification Form

Laboratory Name: Eurofins Lancaster Laboratories Environmental

report is, to the best of my knowledge and belief, accurate and complete.

Project: Olin Wilmington

This form provides certifications for the following data set: 1069020-1069025

Sample Matrices: Water

Methods Used:

EPA 537 Version 1.1 Modified

| Affirmative responses to questions A through F are required for "Presumptive Certainty" status                       |                                                                                                    |     |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| Α                                                                                                                    | Were all samples received in a condition consistent with those described on the Chain-of-          |     |  |  |  |  |
|                                                                                                                      | Custody, properly preserved (including temperature) in the field or laboratory, and                |     |  |  |  |  |
|                                                                                                                      | prepared/analyzed within method holding times?                                                     |     |  |  |  |  |
| В                                                                                                                    | Were the analytical method(s) and all associated QC requirements specified in the selected         | Yes |  |  |  |  |
|                                                                                                                      | CAM protocol(s) followed?                                                                          | 100 |  |  |  |  |
| С                                                                                                                    | Were all required corrective actions and analytical response actions specified in the selected     | Yes |  |  |  |  |
|                                                                                                                      | CAM protocol(s) implemented for all identified performance standard non-conformances?              | 162 |  |  |  |  |
| D                                                                                                                    | Does the laboratory report comply with all the reporting requirements specified in CAM VII A,      |     |  |  |  |  |
|                                                                                                                      | "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of             | Yes |  |  |  |  |
|                                                                                                                      | Analytical Data"?                                                                                  |     |  |  |  |  |
| E                                                                                                                    | VPH, EPH, APH, and TO-15 only:                                                                     |     |  |  |  |  |
|                                                                                                                      | a. VPH, EPH, and APH Methods only: Was each method conducted without significant                   | NA  |  |  |  |  |
|                                                                                                                      | modification(s)? (Refer to the individual method(s) for a list of significant modifications).      |     |  |  |  |  |
|                                                                                                                      | b. APH and TO-15 Methods only. Was the complete analyte list reported for each method?             | NA  |  |  |  |  |
| F                                                                                                                    | Were all applicable CAM protocol QC and performance standard non-conformances identified           | Yes |  |  |  |  |
|                                                                                                                      | and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?   | 163 |  |  |  |  |
|                                                                                                                      | Responses to Questions G, H and I below are required for "Presumptive Certainty" status            |     |  |  |  |  |
| G                                                                                                                    | Were the reporting limits at or below all CAM reporting limits specified in the selected CAM       | No  |  |  |  |  |
|                                                                                                                      | protocol(s)?                                                                                       |     |  |  |  |  |
| <u>Data User Note</u> : Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability |                                                                                                    |     |  |  |  |  |
| and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.                             |                                                                                                    |     |  |  |  |  |
| Н                                                                                                                    | Were all QC performance standards specified in the CAM protocol(s) achieved?                       | Yes |  |  |  |  |
|                                                                                                                      | Were results reported for the complete analyte list specified in the selected CAM protocol(s)? Yes |     |  |  |  |  |
| <sup>1</sup> Refer to the Case Narrative for information regarding negative responses.                               |                                                                                                    |     |  |  |  |  |
| I, the undersigned, attest under the pains and penalties of perjury that the material contained in this analytical   |                                                                                                    |     |  |  |  |  |

Kenneth Boley

Senior Specialist, Quality Assurance



### Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: Olin Wilmington ELLE Group #: 2046391

#### **General Comments:**

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below.

Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

#### **Analysis Specific Comments:**

#### EPA 537 Version 1.1 Modified, LC/MS/MS Miscellaneous

Sample #s: 1069024

Reporting limits were raised due to interference from the sample matrix.

Sample #s: 1069025

The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

GW 1069020

2046391

**TestAmerica** ELLE Sample #:

**ELLE Group #:** 

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: **OC-GW-10DR-XXX Groundwater** 

**Olin Wilmington** 

**Project Name: Olin Wilmington** 

Submittal Date/Time: 05/30/2019 10:20 Collection Date/Time: SDG#: TAO18-10

05/29/2019 14:20

| CAT<br>No. | Analysis Name                                                | CAS Number                        | Result                     | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|--------------------------------------------------------------|-----------------------------------|----------------------------|--------------------------|--------------------|
| LC/MS/     | /MS Miscellaneous EPA 537 Ve<br>Modified                     | rsion 1.1                         | ng/l                       | ng/l                     |                    |
| 14473      | NEtFOSAA¹ NEtFOSAA is the acronym for N-ethyl perf           | 2991-50-6<br>luorooctanesulfonan  | N.D.<br>nidoacetic Acid.   | 2.7                      | 1                  |
| 14473      | NMeFOSAA <sup>1</sup> NMeFOSAA is the acronym for N-methyl p | 2355-31-9<br>erfluorooctanesulfor | N.D.<br>namidoacetic Acid. | 2.7                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                                | 375-73-5                          | 0.70 J                     | 0.89                     | 1                  |
| 14473      | Perfluorodecanoic acid1                                      | 335-76-2                          | N.D.                       | 1.8                      | 1                  |
| 14473      | Perfluorododecanoic acid1                                    | 307-55-1                          | N.D.                       | 1.8                      | 1                  |
| 14473      | Perfluoroheptanoic acid <sup>1</sup>                         | 375-85-9                          | 1.8                        | 0.89                     | 1                  |
| 14473      | Perfluorohexanesulfonic acid1                                | 355-46-4                          | 0.38 J                     | 1.8                      | 1                  |
| 14473      | Perfluorohexanoic acid1                                      | 307-24-4                          | 1.7 J                      | 1.8                      | 1                  |
| 14473      | Perfluorononanoic acid1                                      | 375-95-1                          | 1.0 J                      | 1.8                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                                | 1763-23-1                         | 1.6 J                      | 1.8                      | 1                  |
| 14473      | Perfluorooctanoic acid1                                      | 335-67-1                          | 6.4                        | 0.89                     | 1                  |
| 14473      | Perfluorotetradecanoic acid1                                 | 376-06-7                          | N.D.                       | 0.89                     | 1                  |
| 14473      | Perfluorotridecanoic acid1                                   | 72629-94-8                        | N.D.                       | 0.89                     | 1                  |
| 14473      | Perfluoroundecanoic acid <sup>1</sup>                        | 2058-94-8                         | N.D.                       | 1.8                      | 1                  |

### **Sample Comments**

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

|            | Laboratory Sample Analysis Record |                                 |        |          |                           |                     |                    |
|------------|-----------------------------------|---------------------------------|--------|----------|---------------------------|---------------------|--------------------|
| CAT<br>No. | Analysis Name                     | Method                          | Trial# | Batch#   | Analysis<br>Date and Time | Analyst             | Dilution<br>Factor |
| 14473      | 14 PFAS                           | EPA 537 Version 1.1 Modified    | 1      | 19156008 | 06/06/2019 15:01          | Jason W Knight      | 1                  |
| 14091      | PFAS Water Prep                   | EPA 537 Version 1.1<br>Modified | 1      | 19156008 | 06/05/2019 15:15          | Isaac Phillips-Cary | 1                  |

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-GW-305-XXX Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

Submittal Date/Time: 05/30/2019 10:20 Collection Date/Time: 05/29/2019 10:14

SDG#: TAO18-11

**TestAmerica** 

ELLE Sample #: GW 1069021 ELLE Group #: 2046391

Matrix: Groundwater

| CAT<br>No. | Analysis Name                                         | CAS Number                        | Result                     | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|-------------------------------------------------------|-----------------------------------|----------------------------|--------------------------|--------------------|
| LC/MS      | /MS Miscellaneous EPA 537 Ve<br>Modified              | ersion 1.1                        | ng/l                       | ng/l                     |                    |
| 14473      | NEtFOSAA¹<br>NEtFOSAA is the acronym for N-ethyl perf | 2991-50-6<br>luorooctanesulfonan  | N.D.<br>nidoacetic Acid.   | 2.6                      | 1                  |
| 14473      | NMeFOSAA¹<br>NMeFOSAA is the acronym for N-methyl p   | 2355-31-9<br>erfluorooctanesulfor | N.D.<br>namidoacetic Acid. | 2.6                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                         | 375-73-5                          | 0.55 J                     | 0.86                     | 1                  |
| 14473      | Perfluorodecanoic acid1                               | 335-76-2                          | N.D.                       | 1.7                      | 1                  |
| 14473      | Perfluorododecanoic acid <sup>1</sup>                 | 307-55-1                          | N.D.                       | 1.7                      | 1                  |
| 14473      | Perfluoroheptanoic acid <sup>1</sup>                  | 375-85-9                          | 1.3                        | 0.86                     | 1                  |
| 14473      | Perfluorohexanesulfonic acid1                         | 355-46-4                          | N.D.                       | 1.7                      | 1                  |
| 14473      | Perfluorohexanoic acid1                               | 307-24-4                          | 1.2 J                      | 1.7                      | 1                  |
| 14473      | Perfluorononanoic acid1                               | 375-95-1                          | 0.69 J                     | 1.7                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                         | 1763-23-1                         | 1.7 J                      | 1.7                      | 1                  |
| 14473      | Perfluorooctanoic acid1                               | 335-67-1                          | 2.9                        | 0.86                     | 1                  |
| 14473      | Perfluorotetradecanoic acid1                          | 376-06-7                          | N.D.                       | 0.86                     | 1                  |
| 14473      | Perfluorotridecanoic acid1                            | 72629-94-8                        | N.D.                       | 0.86                     | 1                  |
| 14473      | Perfluoroundecanoic acid <sup>1</sup>                 | 2058-94-8                         | N.D.                       | 1.7                      | 1                  |

### **Sample Comments**

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

|            | Laboratory Sample Analysis Record |                                 |        |          |                           |                     |                    |
|------------|-----------------------------------|---------------------------------|--------|----------|---------------------------|---------------------|--------------------|
| CAT<br>No. | Analysis Name                     | Method                          | Trial# | Batch#   | Analysis<br>Date and Time | Analyst             | Dilution<br>Factor |
| 14473      | 14 PFAS                           | EPA 537 Version 1.1 Modified    | 1      | 19156008 | 06/06/2019 15:10          | Jason W Knight      | 1                  |
| 14091      | PFAS Water Prep                   | EPA 537 Version 1.1<br>Modified | 1      | 19156008 | 06/05/2019 15:15          | Isaac Phillips-Cary | 1                  |

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-GW-307-XXX Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

Submittal Date/Time: 05/30/2019 10:20 Collection Date/Time: 05/29/2019 13:18

SDG#: TAO18-12

| TestAmerica    |            |
|----------------|------------|
| ELLE Sample #: | GW 1069022 |
| ELLE Group #:  | 2046391    |

Matrix: Groundwater

| 14473 NMeFO<br>NMeFO<br>14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor           | Modified SAA <sup>1</sup> SAA is the acronym for N-ethyl perfl SAA <sup>1</sup> SAA is the acronym for N-methyl p | 2991-50-6<br>luorooctanesulfonal<br>2355-31-9 | N.D.                     | ng/l<br>2.7<br>2.7 | 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------|--------------------|---|
| NEtFOS<br>14473 NMeFO<br>NMeFO<br>14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor | SAA is the acronym for N-ethyl perf<br>DSAA¹<br>DSAA is the acronym for N-methyl p                                | luorooctanesulfona<br>2355-31-9               | midoacetic Acid.<br>N.D. |                    | 1 |
| NMeFO 14473 Perfluor 14473 Perfluor 14473 Perfluor 14473 Perfluor 14473 Perfluor 14473 Perfluor                                            | SAA is the acronym for N-methyl p                                                                                 |                                               |                          | 2.7                | 1 |
| 14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor                                                     |                                                                                                                   |                                               |                          |                    |   |
| 14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor                                                                       | robutanesulfonic acid¹                                                                                            | 375-73-5                                      | 1.2                      | 0.88               | 1 |
| 14473 Perfluor<br>14473 Perfluor<br>14473 Perfluor                                                                                         | rodecanoic acid1                                                                                                  | 335-76-2                                      | N.D.                     | 1.8                | 1 |
| 14473 Perfluor<br>14473 Perfluor                                                                                                           | rododecanoic acid1                                                                                                | 307-55-1                                      | N.D.                     | 1.8                | 1 |
| 14473 Perfluor                                                                                                                             | roheptanoic acid¹                                                                                                 | 375-85-9                                      | 1.9                      | 0.88               | 1 |
|                                                                                                                                            | rohexanesulfonic acid1                                                                                            | 355-46-4                                      | N.D.                     | 1.8                | 1 |
| 11170 Darflua                                                                                                                              | rohexanoic acid¹                                                                                                  | 307-24-4                                      | 2.5                      | 1.8                | 1 |
| 14473 Perfluor                                                                                                                             | rononanoic acid¹                                                                                                  | 375-95-1                                      | 1.1 J                    | 1.8                | 1 |
| 14473 Perfluor                                                                                                                             | rooctanesulfonic acid1                                                                                            | 1763-23-1                                     | 2.8                      | 1.8                | 1 |
| 14473 Perfluor                                                                                                                             | rooctanoic acid1                                                                                                  | 335-67-1                                      | 5.4                      | 0.88               | 1 |
| 14473 Perfluor                                                                                                                             | rotetradecanoic acid1                                                                                             | 376-06-7                                      | N.D.                     | 0.88               | 1 |
| 14473 Perfluor                                                                                                                             |                                                                                                                   | 72629-94-8                                    | N.D.                     | 0.88               | 1 |
| 14473 Perfluor                                                                                                                             | rotridecanoic acid1                                                                                               | 2058-94-8                                     | N.D.                     | 1.8                | 1 |

#### **Sample Comments**

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

#### **Laboratory Sample Analysis Record** Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution Date and Time No. Factor EPA 537 Version 1.1 14473 14 PFAS 19156008 06/06/2019 15:19 Jason W Knight Modified EPA 537 Version 1.1 PFAS Water Prep 19156008 06/05/2019 15:15 Isaac Phillips-Cary 1 14091 Modified

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

GW 1069023

2046391

TestAmerica ELLE Sample #:

**ELLE Group #:** 

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-MP-1#14-XXX Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

Submittal Date/Time: 05/30/2019 10:20 Collection Date/Time: 05/29/2019 09:05

SDG#: TAO18-13

| CAT<br>No. | Analysis Name                                             | CAS Number                            | Result                      | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|-----------------------------------------------------------|---------------------------------------|-----------------------------|--------------------------|--------------------|
| LC/MS      | MS Miscellaneous EPA 537                                  | Version 1.1                           | ng/l                        | ng/l                     |                    |
| 14473      | NEtFOSAA <sup>1</sup> NEtFOSAA is the acronym for N-ethyl | 2991-50-6<br>perfluorooctanesulfona   | N.D.<br>midoacetic Acid.    | 2.7                      | 1                  |
| 14473      | NMeFOSAA <sup>1</sup> NMeFOSAA is the acronym for N-met   | 2355-31-9<br>hyl perfluorooctanesulfo | N.D.<br>onamidoacetic Acid. | 2.7                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                             | 375-73-5                              | 0.82 J                      | 0.90                     | 1                  |
| 14473      | Perfluorodecanoic acid1                                   | 335-76-2                              | N.D.                        | 1.8                      | 1                  |
| 14473      | Perfluorododecanoic acid1                                 | 307-55-1                              | N.D.                        | 1.8                      | 1                  |
| 14473      | Perfluoroheptanoic acid1                                  | 375-85-9                              | 1.5                         | 0.90                     | 1                  |
| 14473      | Perfluorohexanesulfonic acid1                             | 355-46-4                              | 0.47 J                      | 1.8                      | 1                  |
| 14473      | Perfluorohexanoic acid1                                   | 307-24-4                              | 2.0                         | 1.8                      | 1                  |
| 14473      | Perfluorononanoic acid1                                   | 375-95-1                              | 1.2 J                       | 1.8                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                             | 1763-23-1                             | 2.8                         | 1.8                      | 1                  |
| 14473      | Perfluorooctanoic acid1                                   | 335-67-1                              | 5.1                         | 0.90                     | 1                  |
| 14473      | Perfluorotetradecanoic acid <sup>1</sup>                  | 376-06-7                              | N.D.                        | 0.90                     | 1                  |
| 14473      | Perfluorotridecanoic acid1                                | 72629-94-8                            | N.D.                        | 0.90                     | 1                  |
| 14473      | Perfluoroundecanoic acid <sup>1</sup>                     | 2058-94-8                             | N.D.                        | 1.8                      | 1                  |

#### **Sample Comments**

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

#### **Laboratory Sample Analysis Record** Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution Date and Time No. Factor EPA 537 Version 1.1 14473 14 PFAS 19156008 06/06/2019 15:28 Jason W Knight Modified EPA 537 Version 1.1 PFAS Water Prep 1 19156008 06/05/2019 15:15 Isaac Phillips-Cary 1 14091 Modified

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

GW 1069024

2046391

TestAmerica ELLE Sample #:

**ELLE Group #:** 

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-MP-1#1-XXX Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

SDG#: TAO18-14

| CAT<br>No. | Analysis Name                                    | CAS Number                            | Result                     | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|--------------------------------------------------|---------------------------------------|----------------------------|--------------------------|--------------------|
| LC/MS      | /MS Miscellaneous EPA 537                        | 7 Version 1.1                         | ng/l                       | ng/l                     |                    |
| 14473      | NEtFOSAA¹<br>NEtFOSAA is the acronym for N-ethyl | 2991-50-6                             | N.D.<br>midoacetic Acid.   | 300                      | 1                  |
| 14473      | NMeFOSAA¹<br>NMeFOSAA is the acronym for N-met   | 2355-31-9<br>hyl perfluorooctanesulfo | N.D.<br>namidoacetic Acid. | 300                      | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                    | 375-73-5                              | N.D.                       | 99                       | 1                  |
| 14473      | Perfluorodecanoic acid1                          | 335-76-2                              | N.D.                       | 200                      | 1                  |
| 14473      | Perfluorododecanoic acid1                        | 307-55-1                              | N.D.                       | 200                      | 1                  |
| 14473      | Perfluoroheptanoic acid1                         | 375-85-9                              | N.D.                       | 99                       | 1                  |
| 14473      | Perfluorohexanesulfonic acid1                    | 355-46-4                              | N.D.                       | 200                      | 1                  |
| 14473      | Perfluorohexanoic acid1                          | 307-24-4                              | N.D.                       | 200                      | 1                  |
| 14473      | Perfluorononanoic acid1                          | 375-95-1                              | N.D.                       | 200                      | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                    | 1763-23-1                             | N.D.                       | 200                      | 1                  |
| 14473      | Perfluorooctanoic acid1                          | 335-67-1                              | N.D.                       | 99                       | 1                  |
| 14473      | Perfluorotetradecanoic acid1                     | 376-06-7                              | N.D.                       | 99                       | 1                  |
| 14473      | Perfluorotridecanoic acid1                       | 72629-94-8                            | N.D.                       | 99                       | 1                  |
| 14473      | Perfluoroundecanoic acid1                        | 2058-94-8                             | N.D.                       | 200                      | 1                  |

#### **Sample Comments**

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

#### **Laboratory Sample Analysis Record** Method CAT Trial# Dilution **Analysis Name** Batch# Analysis **Analyst** Date and Time **Factor** 14473 14 PFAS EPA 537 Version 1.1 19156008 06/06/2019 15:37 Jason W Knight Modified 14091 PFAS Water Prep EPA 537 Version 1.1 19156008 06/05/2019 15:15 Isaac Phillips-Cary 1 Modified

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

GW 1069025

2046391

TestAmerica ELLE Sample #:

**ELLE Group #:** 

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-MP-1#4-XXX Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

SDG#: TAO18-15

| CAT<br>No. | Analysis Name                                                                                                                                                                                      | CAS Number                        | Result                     | Limit of Quantitation | Dilution<br>Factor |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------|-----------------------|--------------------|--|--|--|--|
| LC/MS      | /MS Miscellaneous EPA 537 Ve<br>Modified                                                                                                                                                           | rsion 1.1                         | ng/l                       | ng/l                  |                    |  |  |  |  |
| 14473      | NEtFOSAA <sup>1</sup><br>NEtFOSAA is the acronym for N-ethyl perfl                                                                                                                                 | 2991-50-6<br>uorooctanesulfonan   | N.D.<br>nidoacetic Acid.   | 2.7                   | 1                  |  |  |  |  |
| 14473      | NMeFOSAA <sup>1</sup><br>NMeFOSAA is the acronym for N-methyl po                                                                                                                                   | 2355-31-9<br>erfluorooctanesulfor | N.D.<br>namidoacetic Acid. | 2.7                   | 1                  |  |  |  |  |
| 14473      | Perfluorobutanesulfonic acid1                                                                                                                                                                      | 375-73-5                          | 0.42 J                     | 0.90                  | 1                  |  |  |  |  |
| 14473      | Perfluorodecanoic acid <sup>1</sup>                                                                                                                                                                | 335-76-2                          | N.D.                       | 1.8                   | 1                  |  |  |  |  |
| 14473      | Perfluorododecanoic acid1                                                                                                                                                                          | 307-55-1                          | N.D.                       | 1.8                   | 1                  |  |  |  |  |
| 14473      | Perfluoroheptanoic acid <sup>1</sup>                                                                                                                                                               | 375-85-9                          | N.D.                       | 0.90                  | 1                  |  |  |  |  |
| 14473      | Perfluorohexanesulfonic acid1                                                                                                                                                                      | 355-46-4                          | 0.61 J                     | 1.8                   | 1                  |  |  |  |  |
| 14473      | Perfluorohexanoic acid <sup>1</sup>                                                                                                                                                                | 307-24-4                          | 2.4                        | 1.8                   | 1                  |  |  |  |  |
| 14473      | Perfluorononanoic acid1                                                                                                                                                                            | 375-95-1                          | 0.82 J                     | 1.8                   | 1                  |  |  |  |  |
| 14473      | Perfluorooctanesulfonic acid1                                                                                                                                                                      | 1763-23-1                         | 4.8                        | 1.8                   | 1                  |  |  |  |  |
| 14473      | Perfluorooctanoic acid1                                                                                                                                                                            | 335-67-1                          | 11                         | 0.90                  | 1                  |  |  |  |  |
| 14473      | Perfluorotetradecanoic acid <sup>1</sup>                                                                                                                                                           | 376-06-7                          | N.D.                       | 0.90                  | 1                  |  |  |  |  |
| 14473      | Perfluorotridecanoic acid <sup>1</sup>                                                                                                                                                             | 72629-94-8                        | N.D.                       | 0.90                  | 1                  |  |  |  |  |
| 14473      | Perfluoroundecanoic acid1                                                                                                                                                                          | 2058-94-8                         | N.D.                       | 1.8                   | 1                  |  |  |  |  |
| limits     | The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample. |                                   |                            |                       |                    |  |  |  |  |

#### Sample Comments

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

#### **Laboratory Sample Analysis Record**

| CAT<br>No. | Analysis Name   | Method                          | Trial# | Batch#   | Analysis<br>Date and Time | Analyst             | Dilution<br>Factor |
|------------|-----------------|---------------------------------|--------|----------|---------------------------|---------------------|--------------------|
| 14473      | 14 PFAS         | EPA 537 Version 1.1<br>Modified | 1      | 19156008 | 06/06/2019 15:46          | Jason W Knight      | 1                  |
| 14091      | PFAS Water Prep | EPA 537 Version 1.1<br>Modified | 1      | 19156008 | 06/05/2019 15:15          | Isaac Phillips-Cary | 1                  |

<sup>&</sup>lt;sup>1</sup> = This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

#### **Quality Control Summary**

Client Name: TestAmerica Group Number: 2046391

Reported: 06/12/2019 11:59

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

#### **Method Blank**

| Analysis Name                | Result      | LOQ              |         |
|------------------------------|-------------|------------------|---------|
|                              | ng/l        | ng/l             |         |
| Batch number: 19156008       | Sample numb | per(s): 1069020- | 1069025 |
| NEtFOSAA                     | N.D.        | 3.0              |         |
| NMeFOSAA                     | N.D.        | 3.0              |         |
| Perfluorobutanesulfonic acid | N.D.        | 1.0              |         |
| Perfluorodecanoic acid       | N.D.        | 2.0              |         |
| Perfluorododecanoic acid     | N.D.        | 2.0              |         |
| Perfluoroheptanoic acid      | N.D.        | 1.0              |         |
| Perfluorohexanesulfonic acid | N.D.        | 2.0              |         |
| Perfluorohexanoic acid       | N.D.        | 2.0              |         |
| Perfluorononanoic acid       | N.D.        | 2.0              |         |
| Perfluorooctanesulfonic acid | N.D.        | 2.0              |         |
| Perfluorooctanoic acid       | N.D.        | 1.0              |         |
| Perfluorotetradecanoic acid  | N.D.        | 1.0              |         |
| Perfluorotridecanoic acid    | N.D.        | 1.0              |         |
| Perfluoroundecanoic acid     | N.D.        | 2.0              |         |

#### LCS/LCSD

| Analysis Name                | LCS Spike<br>Added<br>ng/l | LCS<br>Conc<br>ng/l | LCSD Spike<br>Added<br>ng/l | LCSD<br>Conc<br>ng/l | LCS<br>%REC | LCSD<br>%REC | LCS/LCSD<br>Limits | RPD | RPD<br>Max |
|------------------------------|----------------------------|---------------------|-----------------------------|----------------------|-------------|--------------|--------------------|-----|------------|
| Batch number: 19156008       | Sample number(             | s): 1069020-1       | 1069025                     |                      |             |              |                    |     |            |
| NEtFOSAA                     | 5.44                       | 5.59                | 5.44                        | 5.17                 | 103         | 95           | 55-169             | 8   | 30         |
| NMeFOSAA                     | 5.44                       | 5.96                | 5.44                        | 6.02                 | 110         | 111          | 44-147             | 1   | 30         |
| Perfluorobutanesulfonic acid | 4.81                       | 4.82                | 4.81                        | 5.08                 | 100         | 106          | 73-128             | 5   | 30         |
| Perfluorodecanoic acid       | 5.44                       | 6.16                | 5.44                        | 5.77                 | 113         | 106          | 69-148             | 6   | 30         |
| Perfluorododecanoic acid     | 5.44                       | 5.91                | 5.44                        | 5.85                 | 109         | 108          | 75-136             | 1   | 30         |
| Perfluoroheptanoic acid      | 5.44                       | 6.32                | 5.44                        | 6.82                 | 116         | 125          | 76-140             | 8   | 30         |
| Perfluorohexanesulfonic acid | 5.14                       | 5.78                | 5.14                        | 5.77                 | 112         | 112          | 71-131             | 0   | 30         |
| Perfluorohexanoic acid       | 5.44                       | 6.48                | 5.44                        | 6.38                 | 119         | 117          | 75-135             | 1   | 30         |
| Perfluorononanoic acid       | 5.44                       | 6.37                | 5.44                        | 6.37                 | 117         | 117          | 72-148             | 0   | 30         |
| Perfluorooctanesulfonic acid | 5.20                       | 4.81                | 5.20                        | 5.14                 | 93          | 99           | 67-138             | 7   | 30         |
| Perfluorooctanoic acid       | 5.44                       | 6.11                | 5.44                        | 6.05                 | 112         | 111          | 72-138             | 1   | 30         |
| Perfluorotetradecanoic acid  | 5.44                       | 5.44                | 5.44                        | 6.29                 | 100         | 116          | 74-135             | 15  | 30         |
| Perfluorotridecanoic acid    | 5.44                       | 5.85                | 5.44                        | 5.92                 | 108         | 109          | 61-145             | 1   | 30         |
| Perfluoroundecanoic acid     | 5.44                       | 5.98                | 5.44                        | 5.68                 | 110         | 104          | 75-146             | 5   | 30         |

<sup>\*-</sup> Outside of specification

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The unspiked result was more than four times the spike added.

#### **Quality Control Summary**

Client Name: TestAmerica Group Number: 2046391 Reported: 06/12/2019 11:59

#### **Labeled Isotope Quality Control**

Labeled isotope recoveries which are outside of the QC window are confirmed unless otherwise noted on the analysis report.

Analysis Name: 14 PFAS Batch number: 19156008

| Daton namb | 1202 DEDC | 120E DELLA | 1202 DEU.C  | 12C4 DEU- A | 1200 DEO A  | 1200 DEOC   |
|------------|-----------|------------|-------------|-------------|-------------|-------------|
|            | 13C3-PFBS | 13C5-PFHxA | 13C3-PFHxS  | 13C4-PFHpA  | 13C8-PFOA   | 13C8-PFOS   |
| 1069020    | 118       | 80         | 97          | 84          | 90          | 82          |
| 1069021    | 124       | 89         | 103         | 91          | 86          | 98          |
| 1069022    | 133       | 80         | 91          | 77          | 84          | 77          |
| 1069023    | 134       | 79         | 90          | 74          | 84          | 85          |
| 1069024    | 85        | 78         | 80          | 81          | 85          | 81          |
| 1069025    | 131       | 70         | 95          | 79          | 85          | 82          |
| Blank      | 99        | 100        | 97          | 98          | 101         | 99          |
| LCS        | 102       | 104        | 96          | 101         | 103         | 104         |
| LCSD       | 99        | 94         | 91          | 95          | 93          | 91          |
| Limits:    | 26-148    | 35-138     | 34-126      | 35-126      | 48-122      | 50-121      |
|            | 13C9-PFNA | 13C6-PFDA  | d3-NMeFOSAA | 13C7-PFUnDA | d5-NEtFOSAA | 13C2-PFDoDA |
| 1069020    | 80        | 89         | 107         | 101         | 104         | 87          |
| 1069021    | 92        | 84         | 90          | 74          | 61          | 84          |
| 1069022    | 75        | 80         | 93          | 81          | 83          | 71          |
| 1069023    | 74        | 89         | 98          | 89          | 87          | 95          |
| 1069024    | 77        | 87         | 85          | 93          | 76          | 86          |
| 1069025    | 74        | 82         | 86          | 85          | 81          | 86          |
| Blank      | 98        | 102        | 111         | 102         | 118         | 103         |
| LCS        | 101       | 94         | 117         | 101         | 113         | 105         |
| LCSD       | 98        | 99         | 113         | 109         | 124         | 98          |
| Limits:    | 41-144    | 47-125     | 30-127      | 30-128      | 30-142      | 39-130      |

|         | 13C2-PFTeDA |
|---------|-------------|
| 1069020 | 56          |
| 1069021 | 85          |
| 1069022 | 39          |
| 1069023 | 95          |
| 1069024 | 85          |
| 1069025 | 81          |
| Blank   | 97          |
| LCS     | 112         |
| LCSD    | 93          |
| Limits: | 26-119      |

<sup>\*-</sup> Outside of specification

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The unspiked result was more than four times the spike added.

# 1042 2046391 1069020-25



Wood Environment and Infrastructure, Inc. 511 Congress Street Portland, ME 04101 (207) 775-5401 SHIP TO: Lancaster Lab 2425 New Holland Pike Lancaster, PA 17601 Atten: Lynn Frederiksen Lab Phone# (717) 656-2300

#### **CHAIN OF CUSTODY**

DATE: 5/29/2019

COC #: Olin190529A

PAGE: \_\_1\_ OF \_\_1\_

|       | Project Name: Project Number:                                                                       | Olin Wilmington                       | Project Contact:<br>Phone Number.          |                         |            | ningham                                                                    |           | lazzolini<br>s = (339) 9: | 27.3706                                 |               | Bill To | : TestA          | merica        |                                             |             |                     | isposal Ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |        | AB<br>EDEX |                                   |
|-------|-----------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------|-------------------------|------------|----------------------------------------------------------------------------|-----------|---------------------------|-----------------------------------------|---------------|---------|------------------|---------------|---------------------------------------------|-------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|------------|-----------------------------------|
|       | Project Manager:                                                                                    | Libby Bowen                           | Project Phase:                             |                         | .001.07    | 3, <del>,                                  </del>                          | 04 O/11/  | 3 (000) 0                 | ., 0,00                                 |               | Relea   | sa Order i       | oust be not   | ed on all in                                | valces      | ECONORIGINATION AND | aybill Nun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |        | /A         |                                   |
| 31400 |                                                                                                     |                                       |                                            |                         |            | T                                                                          |           |                           | 000000000000000000000000000000000000000 | 100-000-000-0 |         |                  |               |                                             |             |                     | and the state of t | 15.51.         |        |            |                                   |
| S     | mple Information                                                                                    |                                       |                                            |                         |            |                                                                            |           |                           |                                         |               | Metho   | ds for An        | alysis        |                                             | <del></del> |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | RUS    | Н          |                                   |
| No    | 1 OC-GW-10DR-XXX                                                                                    | Date & Time Sampled<br>05/29/19 14:20 | Matrix<br>GW                               | Sample Type<br>N        | Z MS/MSD   | PFAS (537) Lancaster<br>(2) 250nL HDPE                                     |           |                           |                                         |               |         |                  |               |                                             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X STD (2-Week) |        |            | N TOTAL BOTTLES HOLD All Analyses |
|       | 2 OC-GW-305-XXX                                                                                     | 05/29/19 10:14                        | GW                                         | N                       | N          | X                                                                          |           |                           |                                         |               |         |                  |               |                                             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X              |        |            | 2                                 |
|       | 3 OC-GW-307-XXX                                                                                     | 05/29/19 13:18                        | GW                                         | N                       | Ν          | X                                                                          |           |                           |                                         |               |         |                  |               |                                             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X              |        |            | 2                                 |
| -     | 4 OC-MP-1 #14-XXX                                                                                   | 05/29/19 09:05                        | GW                                         | N                       | N          | X                                                                          |           |                           |                                         |               |         |                  |               |                                             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X              |        |            | 2                                 |
| -     | OC-MP-1 #1-XXX                                                                                      | 05/29/19 11:30                        | GW                                         | N                       | N          | ×                                                                          |           |                           |                                         |               |         |                  |               |                                             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X              |        |            | 2                                 |
| L     | 6 OC-MP-1 #4XXX                                                                                     | 05/29/19 10:20                        | GW                                         | N                       | N          | ×                                                                          |           |                           |                                         |               |         |                  |               |                                             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X              |        |            | 2                                 |
| -     | 7<br>8<br>9                                                                                         |                                       |                                            |                         |            |                                                                            |           |                           |                                         |               |         |                  |               |                                             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |        |            |                                   |
| 1     | o l                                                                                                 |                                       |                                            |                         |            |                                                                            |           |                           |                                         |               |         |                  |               |                                             |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |        |            |                                   |
| 1     | 1                                                                                                   |                                       |                                            |                         |            |                                                                            |           |                           |                                         |               |         |                  |               |                                             |             |                     | +-+-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |        |            |                                   |
| 1-    | 2                                                                                                   |                                       |                                            |                         |            |                                                                            |           | -                         |                                         |               |         |                  | <del>  </del> |                                             | 1           |                     | ++-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | -+-    | +          | $\dashv \dashv$                   |
|       |                                                                                                     |                                       | Date:                                      | Time:                   | ****       |                                                                            |           |                           | For                                     | r Lab Us      | se .    |                  |               | $\top$                                      |             |                     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |        |            | $\dashv$                          |
| Re    | mpler's Signature:<br>Uyaluth penta<br>Ilinglished By/Affiliation:<br>Ulyaluth penta<br>Ceivell By: | Elizabeth Penta                       | 05/29/2019<br>Date:<br>05/29/2019<br>Date: | 16:00<br>Time:<br>16:00 |            | Does COC match samples: Broken Container: COC seal intact: Other problems: |           |                           |                                         |               | •       | Y or N<br>Y or N | Co            | Comments: X=Analyze H=Hold Analysis Request |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |        |            |                                   |
| 1     | FedEx                                                                                               |                                       | 05/29/2019                                 | 16:30                   |            |                                                                            | contacted | i:                        |                                         |               |         |                  | Y or N        |                                             | ease Se     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for inv        | oicing | 3          |                                   |
| L     | linquished By/Affiliation:                                                                          |                                       | Date:                                      | Time:                   |            | Date cor                                                                   | ntacted:  |                           |                                         |               |         | 3,               | 2             |                                             | AL Projec   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |        |            | 1                                 |
|       | celved By:                                                                                          |                                       | Date:                                      | Time:                   |            | Cooler T                                                                   | emperatu  | re at receip              | t:                                      |               |         | - >,             | 5 %           | - 1 1                                       | JMBER O     | F COOLE             | RS SENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |        | 1          |                                   |
| L     | linquished By/Affiliation:<br>ceived By (LAB):                                                      | m                                     | Date: 5/30//                               | Time:                   | <u>.</u> e |                                                                            |           |                           |                                         |               |         | Delive           | rables: Le    | vel 2, Lev                                  | vel 4 and   | I EQUIS I           | EZ EDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |        |            |                                   |



# Sample Administration Receipt Documentation Log

Doc Log ID: 250260

Group Number(s): 2046391

Client: Wood Environmental and Infrastructure

**Delivery and Receipt Information** 

Delivery Method: Fed Ex Arrival Timestamp: 05/30/2019 10:20

Number of Packages: 1 Number of Projects: 1

State/Province of Origin: ME

**Arrival Condition Summary** 

Shipping Container Sealed: Yes Sample IDs on COC match Containers: Yes

Custody Seal Present: Yes Sample Date/Times match COC: Yes

Custody Seal Intact: Yes VOA Vial Headspace ≥ 6mm: N/A

Samples Chilled: Yes Total Trip Blank Qty: 0

Paperwork Enclosed: Yes Air Quality Samples Present: No

Samples Intact: Yes

Missing Samples: No

Extra Samples: No

Discrepancy in Container Qty on COC: No

Unpacked by Simon Nies (25112) at 15:57 on 05/30/2019

**Samples Chilled Details** 

Thermometer Types: DT = Digital (Temp. Bottle) IR = Infrared (Surface Temp) All Temperatures in °C.

 Cooler #
 Thermometer ID
 Corrected Temp
 Therm. Type
 Ice Type
 Ice Present?
 Ice Container
 Elevated Temp?

 1
 DT42-03
 3.3
 DT
 Wet
 Y
 Bagged
 N



**BMQL** 

ppb

basis

Dry weight

### **Explanation of Symbols and Abbreviations**

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

|          |                                      |                             | ` '                                                                                                                                                               |
|----------|--------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С        | degrees Celsius                      | MPN                         | Most Probable Number                                                                                                                                              |
| cfu      | colony forming units                 | N.D.                        | non-detect                                                                                                                                                        |
| CP Units | cobalt-chloroplatinate units         | ng                          | nanogram(s)                                                                                                                                                       |
| F        | degrees Fahrenheit                   | NTU                         | nephelometric turbidity units                                                                                                                                     |
| g        | gram(s)                              | pg/L                        | picogram/liter                                                                                                                                                    |
| IU       | International Units                  | RL                          | Reporting Limit                                                                                                                                                   |
| kg       | kilogram(s)                          | TNTC                        | Too Numerous To Count                                                                                                                                             |
| L        | liter(s)                             | μg                          | microgram(s)                                                                                                                                                      |
| lb.      | pound(s)                             | μL                          | microliter(s)                                                                                                                                                     |
| m3       | cubic meter(s)                       | umhos/cm                    | micromhos/cm                                                                                                                                                      |
| meq      | milliequivalents                     | MCL                         | Maximum Contamination Limit                                                                                                                                       |
| mg       | milligram(s)                         |                             |                                                                                                                                                                   |
| <        | less than                            |                             |                                                                                                                                                                   |
| >        | greater than                         |                             |                                                                                                                                                                   |
| ppm      | aqueous liquids, ppm is usually take | n to be equivalent to milli | kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight juivalent to one microliter per liter of gas. |

mL

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

parts per billion

as-received basis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.



# **Data Qualifiers**

| Qualifier      | Definition                                                                                                 |
|----------------|------------------------------------------------------------------------------------------------------------|
| С              | Result confirmed by reanalysis                                                                             |
| D1             | Indicates for dual column analyses that the result is reported from column 1                               |
| D2             | Indicates for dual column analyses that the result is reported from column 2                               |
| E              | Concentration exceeds the calibration range                                                                |
| K1             | Initial Calibration Blank is above the QC limit and the sample result is ND                                |
| K2             | Continuing Calibration Blank is above the QC limit and the sample result is ND                             |
| K3             | Initial Calibration Verification is above the QC limit and the sample result is ND                         |
| K4             | Continuing Calibration Verification is above the QC limit and the sample result is ND                      |
| J (or G, I, X) | Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)      |
| Р              | Concentration difference between the primary and confirmation column >40%. The lower result is reported.   |
| P^             | Concentration difference between the primary and confirmation column > 40%. The higher result is reported. |
| U              | Analyte was not detected at the value indicated                                                            |
| V              | Concentration difference between the primary and confirmation column >100%. The reporting limit is raised  |
|                | due to this disparity and evident interference.                                                            |
| W              | The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.                              |
| Z              | Laboratory Defined - see analysis report                                                                   |

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.









#### **ANALYSIS REPORT**

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

TestAmerica 501 Southampton Road Suite C Westfield MA 01085

Report Date: July 19, 2019 12:46

**Project: Olin Wilmington** 

Account #: 01042 Group Number: 2052690 SDG: TAO20 PO Number: 48006612 State of Sample Origin: MA

| Electronic Copy To | Olin Chemicals   | Attn: James Cashwell       |
|--------------------|------------------|----------------------------|
| Electronic Copy To | Olin Corporation | Attn: Chinny Esakkiperumal |
| Electronic Copy To | Wood PLC         | Attn: Binks Colby-George   |
| Electronic Copy To | Wood PLC         | Attn: Tige Cunningham      |
| Electronic Copy To | Wood PLC         | Attn: Chris Ricardi        |
| Electronic Copy To | Wood PLC         | Attn: Karen Savage         |
| Electronic Copy To | Wood PLC         | Attn: Peter Thompson       |
| Electronic Copy To | Wood PLC         | Attn: Chris Mazzolini      |
| Electronic Copy To | Wood             | Attn: Elizabeth Penta      |
| Electronic Copy To | Wood PLC         | Attn: Libby Bowen          |

Respectfully Submitted,

Lynn M. Frederiksen

Principal Specialist Group Leader

Lyn M. Frederiksen

(717) 556-7255

To view our laboratory's current scopes of accreditation please go to <a href="https://www.eurofinsus.com/environment-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/">https://www.eurofinsus.com/environmental-testing/laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratories-environmental/</a>. Historical copies may be requested through your project manager.









#### **SAMPLE INFORMATION**

**Client Sample Description** 

Sample Collection
Date/Time

ELLE#

OC-MP-1#1-XXX Groundwater

05/29/2019 11:30

1097483

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.



#### Lancaster Laboratories Environmental







2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

#### **MADEP MCP Analytical Method Report Certification Form**

Laboratory Name: Eurofins Lancaster Laboratories Environmental

Project: Olin Wilmington

This form provides certifications for the following data set: Sample number(s): 1097483

Sample Matrices: Water

Methods Used:

EPA 537 Version 1.1 Modified

| Affii           | rmative responses to questions A through F are required for "Presumptive Certainty" status                                                                                           | Yes or No <sup>1</sup> |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Α               | Were all samples received in a condition consistent with those described on the Chain-of-                                                                                            | NI-                    |
|                 | Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?                                                   | No                     |
| В               | Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?                                                                 | Yes                    |
| O               | Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? | Yes                    |
| D               | Does the laboratory report comply with all the reporting requirements specified in CAM VII A,                                                                                        |                        |
|                 | "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of                                                                                               | Yes                    |
|                 | Analytical Data"?                                                                                                                                                                    |                        |
| Е               | VPH, EPH, APH, and TO-15 only:                                                                                                                                                       |                        |
|                 | a. VPH, EPH, and APH Methods only: Was each method conducted without significant                                                                                                     | NA                     |
|                 | modification(s)? (Refer to the individual method(s) for a list of significant modifications).                                                                                        |                        |
|                 | b. APH and TO-15 Methods only. Was the complete analyte list reported for each method?                                                                                               | NA                     |
| F               | Were all applicable CAM protocol QC and performance standard non-conformances identified                                                                                             | Yes                    |
|                 | and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?                                                                                     | 163                    |
| Res             | ponses to Questions G, H and I below are required for "Presumptive Certainty" status                                                                                                 |                        |
| G               | Were the reporting limits at or below all CAM reporting limits specified in the selected CAM                                                                                         | No                     |
|                 | protocol(s)?                                                                                                                                                                         | 140                    |
|                 | Data User Note: Data that achieve "Presumptive Certainty" status may not necessarily meet the data usar                                                                              | bility                 |
|                 | and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.                                                                                             |                        |
| Н               | Were all QC performance standards specified in the CAM protocol(s) achieved?                                                                                                         | Yes                    |
| I               | Were results reported for the complete analyte list specified in the selected CAM protocol(s)?                                                                                       | Yes                    |
| <sup>1</sup> Re | efer to the Case Narrative for information regarding negative responses.                                                                                                             |                        |
| ما 4 ا          | and an area of letters we do the project and providing of project that the protection of in this are                                                                                 | -1.4!1                 |

I, the undersigned, attest under the pains and penalties of perjury that the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Kenneth Boley

Senior Specialist, Quality Assurance



### Case Narrative

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Project Name: Olin Wilmington ELLE Group #: 2052690

#### **General Comments:**

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below.

Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set.

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

#### **Analysis Specific Comments:**

#### EPA 537 Version 1.1 Modified, LC/MS/MS Miscellaneous

Sample #s: 1097483

Reporting limits were raised due to interference from the sample matrix.

The holding time was not met. Per client request, this sample was extracted outside of the method holding time.



GW 1097483

2052690

TestAmerica ELLE Sample #:

**ELLE Group #:** 

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description: OC-MP-1#1-XXX Groundwater

**Olin Wilmington** 

Project Name: Olin Wilmington

SDG#: TAO20-01

| CAT<br>No. | Analysis Name                                                | CAS Number                            | Result                     | Limit of<br>Quantitation | Dilution<br>Factor |
|------------|--------------------------------------------------------------|---------------------------------------|----------------------------|--------------------------|--------------------|
| LC/MS      | /MS Miscellaneous EPA 537<br>Modified                        | Version 1.1                           | ng/l                       | ng/l                     |                    |
| 14473      | NEtFOSAA <sup>1</sup><br>NEtFOSAA is the acronym for N-ethyl | 2991-50-6<br>perfluorooctanesulfona   | N.D.<br>midoacetic Acid.   | 75                       | 1                  |
| 14473      | NMeFOSAA <sup>1</sup><br>NMeFOSAA is the acronym for N-meth  | 2355-31-9<br>nyl perfluorooctanesulfo | N.D.<br>namidoacetic Acid. | 75                       | 1                  |
| 14473      | Perfluorobutanesulfonic acid1                                | 375-73-5                              | N.D.                       | 25                       | 1                  |
| 14473      | Perfluorodecanoic acid1                                      | 335-76-2                              | N.D.                       | 50                       | 1                  |
| 14473      | Perfluorododecanoic acid1                                    | 307-55-1                              | N.D.                       | 50                       | 1                  |
| 14473      | Perfluoroheptanoic acid1                                     | 375-85-9                              | N.D.                       | 25                       | 1                  |
| 14473      | Perfluorohexanesulfonic acid1                                | 355-46-4                              | N.D.                       | 50                       | 1                  |
| 14473      | Perfluorohexanoic acid1                                      | 307-24-4                              | N.D.                       | 50                       | 1                  |
| 14473      | Perfluorononanoic acid1                                      | 375-95-1                              | N.D.                       | 50                       | 1                  |
| 14473      | Perfluorooctanesulfonic acid1                                | 1763-23-1                             | N.D.                       | 50                       | 1                  |
| 14473      | Perfluorooctanoic acid1                                      | 335-67-1                              | N.D.                       | 25                       | 1                  |
| 14473      | Perfluorotetradecanoic acid1                                 | 376-06-7                              | N.D.                       | 25                       | 1                  |
| 14473      | Perfluorotridecanoic acid1                                   | 72629-94-8                            | N.D.                       | 25                       | 1                  |
| 14473      | Perfluoroundecanoic acid1                                    | 2058-94-8                             | N.D.                       | 50                       | 1                  |
| Repo       | rting limits were raised due to interference                 | ce from the sample mate               | rix.                       |                          |                    |

The holding time was not met. Per client request, this sample was extracted outside of the method holding time.

#### **Sample Comments**

State of Massachusetts Laboratory Non-Potable Water Certification M-PA009

This sample was originally received on 5/30/19 at 10:20; we received a request for a re-extraction from R. Morris of Olin on 6/21/19.

#### **Laboratory Sample Analysis Record** Method CAT Trial# Batch# Analysis **Analyst** Dilution **Analysis Name** Date and Time No. **Factor** 14473 14 PFAS EPA 537 Version 1.1 19171009 06/22/2019 21:18 Danielle D McCully Modified 14091 PFAS Water Prep EPA 537 Version 1.1 19171009 06/20/2019 15:45 Isaac Phillips-Cary Modified

<sup>1 =</sup> This analyte was not on the laboratory's MA DEP Scope of Accreditation at the time of analysis.

#### **Quality Control Summary**

Client Name: TestAmerica Group Number: 2052690

Reported: 07/19/2019 12:46

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

#### **Method Blank**

| Analysis Name                | Result     | LOQ             |
|------------------------------|------------|-----------------|
|                              | ng/l       | ng/l            |
| Batch number: 19171009       | Sample num | ber(s): 1097483 |
| NEtFOSAA                     | N.D.       | 3.0             |
| NMeFOSAA                     | N.D.       | 3.0             |
| Perfluorobutanesulfonic acid | N.D.       | 1.0             |
| Perfluorodecanoic acid       | N.D.       | 2.0             |
| Perfluorododecanoic acid     | N.D.       | 2.0             |
| Perfluoroheptanoic acid      | N.D.       | 1.0             |
| Perfluorohexanesulfonic acid | N.D.       | 2.0             |
| Perfluorohexanoic acid       | N.D.       | 2.0             |
| Perfluorononanoic acid       | N.D.       | 2.0             |
| Perfluorooctanesulfonic acid | 0.40 J     | 2.0             |
| Perfluorooctanoic acid       | N.D.       | 1.0             |
| Perfluorotetradecanoic acid  | N.D.       | 1.0             |
| Perfluorotridecanoic acid    | N.D.       | 1.0             |
| Perfluoroundecanoic acid     | N.D.       | 2.0             |

#### LCS/LCSD

| Analysis Name                | LCS Spike<br>Added<br>ng/l | LCS<br>Conc<br>ng/l | LCSD Spike<br>Added<br>ng/l | LCSD<br>Conc<br>ng/l | LCS<br>%REC | LCSD<br>%REC | LCS/LCSD<br>Limits | RPD | RPD<br>Max |
|------------------------------|----------------------------|---------------------|-----------------------------|----------------------|-------------|--------------|--------------------|-----|------------|
| Batch number: 19171009       | Sample number(             | s): 1097483         |                             |                      |             |              |                    |     |            |
| NEtFOSAA                     | 5.44                       | 5.98                | 5.44                        | 6.77                 | 110         | 124          | 55-169             | 12  | 30         |
| NMeFOSAA                     | 5.44                       | 5.54                | 5.44                        | 5.71                 | 102         | 105          | 44-147             | 3   | 30         |
| Perfluorobutanesulfonic acid | 4.81                       | 4.49                | 4.81                        | 4.54                 | 93          | 94           | 73-128             | 1   | 30         |
| Perfluorodecanoic acid       | 5.44                       | 5.42                | 5.44                        | 5.12                 | 100         | 94           | 69-148             | 6   | 30         |
| Perfluorododecanoic acid     | 5.44                       | 5.59                | 5.44                        | 5.34                 | 103         | 98           | 75-136             | 5   | 30         |
| Perfluoroheptanoic acid      | 5.44                       | 5.50                | 5.44                        | 5.78                 | 101         | 106          | 76-140             | 5   | 30         |
| Perfluorohexanesulfonic acid | 5.14                       | 4.67                | 5.14                        | 4.80                 | 91          | 93           | 71-131             | 3   | 30         |
| Perfluorohexanoic acid       | 5.44                       | 5.26                | 5.44                        | 5.53                 | 97          | 102          | 75-135             | 5   | 30         |
| Perfluorononanoic acid       | 5.44                       | 5.10                | 5.44                        | 4.90                 | 94          | 90           | 72-148             | 4   | 30         |
| Perfluorooctanesulfonic acid | 5.20                       | 4.81                | 5.20                        | 4.78                 | 92          | 92           | 67-138             | 1   | 30         |
| Perfluorooctanoic acid       | 5.44                       | 5.34                | 5.44                        | 5.29                 | 98          | 97           | 72-138             | 1   | 30         |
| Perfluorotetradecanoic acid  | 5.44                       | 5.64                | 5.44                        | 5.01                 | 104         | 92           | 74-135             | 12  | 30         |
| Perfluorotridecanoic acid    | 5.44                       | 6.02                | 5.44                        | 5.24                 | 111         | 96           | 61-145             | 14  | 30         |
| Perfluoroundecanoic acid     | 5.44                       | 5.67                | 5.44                        | 5.89                 | 104         | 108          | 75-146             | 4   | 30         |

<sup>\*-</sup> Outside of specification

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

### **Quality Control Summary**

Client Name: TestAmerica Group Number: 2052690

Reported: 07/19/2019 12:46

#### **Labeled Isotope Quality Control**

Labeled isotope recoveries which are outside of the QC window are confirmed unless otherwise noted on the analysis report.

Analysis Name: 14 PFAS Batch number: 19171009

|         | 13C3-PFBS | 13C5-PFHxA | 13C3-PFHxS  | 13C4-PFHpA  | 13C8-PFOA   | 13C8-PFOS   |
|---------|-----------|------------|-------------|-------------|-------------|-------------|
| 1097483 | 86        | 89         | 99          | 91          | 89          | 77          |
| Blank   | 79        | 77         | 80          | 79          | 79          | 80          |
| LCS     | 77        | 88         | 89          | 84          | 88          | 82          |
| LCSD    | 75        | 74         | 74          | 72          | 72          | 72          |
| Limits: | 26-148    | 35-138     | 34-126      | 35-126      | 48-122      | 50-121      |
|         | 13C9-PFNA | 13C6-PFDA  | d3-NMeFOSAA | 13C7-PFUnDA | d5-NEtFOSAA | 13C2-PFDoDA |
| 1097483 | 73        | 73         | 66          | 80          | 71          | 81          |
| Blank   | 83        | 74         | 89          | 80          | 81          | 76          |
| LCS     | 91        | 82         | 89          | 93          | 85          | 78          |
| LCSD    | 79        | 78         | 71          | 76          | 77          | 76          |
| Limits: | 41-144    | 47-125     | 30-127      | 30-128      | 30-142      | 39-130      |

|         | 13C2-PFTeDA |   |
|---------|-------------|---|
| 1097483 | 87          | _ |
| Blank   | 78          |   |
| LCS     | 78          |   |
| LCSD    | 80          |   |
|         |             |   |

Limits: 26-119

<sup>\*-</sup> Outside of specification

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The unspiked result was more than four times the spike added.

2052690 / 1097483 1042 | 2046391 | 1069020-25 @mzzy

wood.

Wood Environment and Infrastructure, Inc. 511 Congress Street Portland, ME 04101 (207) 775-5401 SHIP TO: Lancaster Lab 2425 New Holland Pike Lancaster, PA 17601 Atten: Lynn Frederiksen

**CHAIN OF CUSTODY** 

DATE: 5/29/2019

COC #: Olin190529A

PAGE: 1 OF 1

|                                         | (201) 110-0401                        |                     |                | Lab Phor    |                                                                         |                                                  | )              |         |              |          |          |             |            |            |           |             |            | PAGE:        | <del>''</del> ' | JF            |
|-----------------------------------------|---------------------------------------|---------------------|----------------|-------------|-------------------------------------------------------------------------|--------------------------------------------------|----------------|---------|--------------|----------|----------|-------------|------------|------------|-----------|-------------|------------|--------------|-----------------|---------------|
| Project Name:                           | Olin Wilmington                       | Project Contact     |                |             |                                                                         |                                                  |                | 1       |              |          | Вііі То; | TestAme     | erica      |            |           | Dis         | posal insi | ructions;    | LAB             | g de la       |
| Project Number,                         | 6107190016                            | Phone Number.       |                | Tige = (2   | 07) 329-0                                                               | 164 CF                                           | iris = (33     | 9) 927- | 3796         |          |          |             |            |            |           |             | pment Me   |              | FEDI            | ŧx            |
| Project Manager.                        | Libby Bowen                           | Project Phase:      |                | .001,07     |                                                                         |                                                  |                |         |              |          | Release  | Order must  | be noted a | on all inv | ices      | Wa          | ybili Num  | oer.         | N/A             |               |
|                                         |                                       |                     |                |             |                                                                         |                                                  |                |         |              |          |          |             |            |            |           |             |            |              |                 |               |
| Sample Information                      |                                       |                     |                | ,           | _                                                                       | 7                                                | 7              | ,       |              | N        | lethods  | for Analys  | ls         |            | ·         | <del></del> |            |              | RUSH            |               |
|                                         |                                       |                     |                | Q           | PFAS (537) Lancaster<br>(2) 250mL HDPE                                  | Repeat w/ 10ML aliquesta                         | fuer R. Marris | LE, 6/2 | HS43 7/10/19 |          |          |             |            |            |           |             |            | STD, Z.Week) |                 | TOTAL BOTTLES |
|                                         |                                       |                     |                | MS/MSD      | 15 (3                                                                   | 3                                                |                |         |              |          |          |             | 1          |            |           |             |            | (Z-N         |                 | A B           |
| No. Sample ID                           | Date & Time Sampled                   | Matrix              | Sample Type    | MS          | F 6                                                                     | er 9                                             | -4 (9          | )Q)     |              |          |          |             |            |            |           |             |            |              |                 | þ             |
| 1 OC-GW-10DR-XXX                        | 05/29/19 14:20                        | GW                  | N              | 7           | X                                                                       |                                                  |                |         |              |          |          |             |            |            |           |             |            | X            |                 | 2             |
| 2 OC-GW-305-XXX                         | 05/29/19 10:14                        | GW                  | N              | 2           | X                                                                       |                                                  |                |         |              |          |          |             |            |            |           |             |            | x            | 11              | 2             |
| 3 OC-GW-307-XXX                         | 05/29/19 13:18                        | GW                  | 2              | Ν           | X                                                                       |                                                  |                |         |              |          |          |             |            |            |           |             |            | x            |                 | 2             |
| 4 OC-MP-1 #14-XXX                       | 05/29/19 09:05                        | GW                  | N              | Ν           | X                                                                       |                                                  |                |         |              |          |          |             |            |            |           |             |            | x            |                 | 2             |
| 5 OC-MP-1 #1-XXX                        | 05/29/19 11:30                        | GW                  | N              | N           | X                                                                       | X                                                |                |         |              |          |          |             |            |            |           |             |            | X            |                 | 2             |
| 6 OC-MP-1 #4XXX                         | 05/29/19 10:20                        | GW                  | N              | ·N          | X                                                                       |                                                  |                |         |              |          |          |             |            |            |           |             |            | x            |                 | 2             |
| 7                                       |                                       |                     |                |             |                                                                         |                                                  |                |         |              |          |          |             |            |            |           |             |            |              |                 |               |
| 8                                       |                                       |                     |                |             |                                                                         |                                                  |                |         |              |          |          |             |            |            |           |             |            |              |                 |               |
| 9                                       |                                       |                     |                |             | Ī                                                                       |                                                  |                |         |              |          |          |             |            |            |           |             |            |              |                 |               |
| 10                                      |                                       |                     |                |             |                                                                         |                                                  |                |         |              |          |          |             |            |            |           |             |            |              |                 |               |
| 11                                      |                                       |                     |                |             | 1                                                                       |                                                  |                |         |              |          |          |             |            |            |           |             | -+-+       |              |                 |               |
| 12                                      |                                       |                     |                |             | 1                                                                       |                                                  | ļ              |         |              |          |          |             |            | -          |           |             | -          | 74 E         |                 |               |
| Sampler's Signature:                    | · · · · · · · · · · · · · · · · · · · | Date:               | Time;          | <del></del> | <del> </del>                                                            |                                                  |                | l       | For Lab      | Use      |          |             |            |            |           |             |            | 20.000 miles | \$2.150.000 B   | **            |
| Sampler's Signature:<br>Luyalut h penta | Elizabeth Penta                       | 05/29/2019          | 16:00          |             |                                                                         | OC matcl                                         |                | s:      |              |          |          | (Y)         | or N       | Con        | ments:    |             |            |              |                 |               |
| Relinguished By/Affiliation:            | wood                                  | Date:<br>05/29/2019 | Time:<br>16:00 |             | COC se                                                                  | Broken Container: Y or N COC seal intact: Y or N |                |         |              |          | X=Anal   | yze H=      | Hold A     | nalysis    | Reque     | st          |            |              |                 |               |
| Received By: FedEx                      |                                       | Date:<br>05/29/2019 | Time:<br>16:30 |             | Other problems: Y or (b)                                                |                                                  |                |         |              |          |          |             |            |            |           |             |            |              |                 |               |
| Relinquished By/Attiliation:            |                                       | Date:               | Time:          |             | WSDOT contacted: Y or N Date contacted: Y or N TAL Project # = 4800661: |                                                  |                |         |              | tor invo | icing    |             |            |            |           |             |            |              |                 |               |
| Received By:                            |                                       | Date:               | Time:          |             | Cooler                                                                  | emperat                                          | ure at red     | ceipt:  |              | _        |          | 3,3         | c          | NIIA       | IBER OF C | OOLERS      | SENT.      |              | 1               |               |
| Relinquished By/Affiliation:            |                                       | Date:               | Time:          | •           |                                                                         |                                                  |                |         |              |          | t        | Deliverable | es: Level  |            |           |             |            |              | <u>-</u>        |               |
| Received By (LAB):                      | m                                     | Date: 5/30//        | Time: /07      | e           |                                                                         |                                                  |                |         |              |          |          |             |            |            |           |             |            |              |                 |               |



#### Sample Administration Receipt Documentation Log

Doc Log ID: 250260

Group Number(s): 2052690

Wood Environmental and Infrastructure Client:

**Delivery and Receipt Information** 

Delivery Method: Fed Ex Arrival Timestamp: 05/30/2019 10:20

Number of Packages: Number of Projects: <u>1</u> <u>1</u>

State/Province of Origin: ME

**Arrival Condition Summary** 

Shipping Container Sealed: Yes Sample IDs on COC match Containers: Yes

**Custody Seal Present:** Yes Sample Date/Times match COC: Yes

**Custody Seal Intact:** Yes VOA Vial Headspace ≥ 6mm: N/A

0 Samples Chilled: Yes Total Trip Blank Qty:

Air Quality Samples Present: No Paperwork Enclosed: Yes

Samples Intact: Yes

Missing Samples: No

Extra Samples: No

Discrepancy in Container Qty on COC: No

Unpacked by Simon Nies (25112) at 15:57 on 05/30/2019

**Samples Chilled Details** 

Thermometer Types: DT = Digital (Temp. Bottle) IR = Infrared (Surface Temp) All Temperatures in °C.

Cooler# Thermometer ID Corrected Temp Therm. Type Ice Type Ice Present? Ice Container **Elevated Temp?** DT42-03 DT Wet Ν 1 3.3 Bagged



**BMQL** 

ppb

basis

Dry weight

parts per billion

as-received basis.

# **Explanation of Symbols and Abbreviations**

milliliter(s)

The following defines common symbols and abbreviations used in reporting technical data:

Below Minimum Quantitation Level

| С        | degrees Celsius                       | MPN                       | Most Probable Number                                                                                                                                             |
|----------|---------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cfu      | colony forming units                  | N.D.                      | non-detect                                                                                                                                                       |
| CP Units | cobalt-chloroplatinate units          | ng                        | nanogram(s)                                                                                                                                                      |
| F        | degrees Fahrenheit                    | NTU                       | nephelometric turbidity units                                                                                                                                    |
| g        | gram(s)                               | pg/L                      | picogram/liter                                                                                                                                                   |
| IU       | International Units                   | RL                        | Reporting Limit                                                                                                                                                  |
| kg       | kilogram(s)                           | TNTC                      | Too Numerous To Count                                                                                                                                            |
| L        | liter(s)                              | μg                        | microgram(s)                                                                                                                                                     |
| lb.      | pound(s)                              | μL                        | microliter(s)                                                                                                                                                    |
| m3       | cubic meter(s)                        | umhos/cm                  | micromhos/cm                                                                                                                                                     |
| meq      | milliequivalents                      | MCL                       | Maximum Contamination Limit                                                                                                                                      |
| mg       | milligram(s)                          |                           |                                                                                                                                                                  |
| <        | less than                             |                           |                                                                                                                                                                  |
| >        | greater than                          |                           |                                                                                                                                                                  |
| ppm      | aqueous liquids, ppm is usually taken | to be equivalent to milli | kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas. |

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.



# **Data Qualifiers**

| Qualifier      | Definition                                                                                                 |
|----------------|------------------------------------------------------------------------------------------------------------|
| С              | Result confirmed by reanalysis                                                                             |
| D1             | Indicates for dual column analyses that the result is reported from column 1                               |
| D2             | Indicates for dual column analyses that the result is reported from column 2                               |
| E              | Concentration exceeds the calibration range                                                                |
| K1             | Initial Calibration Blank is above the QC limit and the sample result is ND                                |
| K2             | Continuing Calibration Blank is above the QC limit and the sample result is ND                             |
| K3             | Initial Calibration Verification is above the QC limit and the sample result is ND                         |
| K4             | Continuing Calibration Verification is above the QC limit and the sample result is ND                      |
| J (or G, I, X) | Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)      |
| Р              | Concentration difference between the primary and confirmation column >40%. The lower result is reported.   |
| P^             | Concentration difference between the primary and confirmation column > 40%. The higher result is reported. |
| U              | Analyte was not detected at the value indicated                                                            |
| V              | Concentration difference between the primary and confirmation column >100%. The reporting limit is raised  |
|                | due to this disparity and evident interference.                                                            |
| W              | The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.                              |
| Z              | Laboratory Defined - see analysis report                                                                   |

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.